Properties

Label 22.0.33329958837...7483.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,683^{21}$
Root discriminant $507.67$
Ramified prime $683$
Class number $1047240485$ (GRH)
Class group $[1047240485]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![39680501725269, -75637782101187, 126007273791531, -119648150339229, 77339144364048, -33274597103613, 8669584750392, -1640795352234, 323098105759, -45350489518, 3371076691, -666527265, 83250417, 27309015, 488956, 568691, -82988, -8892, -300, -336, 16, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 16*x^20 - 336*x^19 - 300*x^18 - 8892*x^17 - 82988*x^16 + 568691*x^15 + 488956*x^14 + 27309015*x^13 + 83250417*x^12 - 666527265*x^11 + 3371076691*x^10 - 45350489518*x^9 + 323098105759*x^8 - 1640795352234*x^7 + 8669584750392*x^6 - 33274597103613*x^5 + 77339144364048*x^4 - 119648150339229*x^3 + 126007273791531*x^2 - 75637782101187*x + 39680501725269)
 
gp: K = bnfinit(x^22 - x^21 + 16*x^20 - 336*x^19 - 300*x^18 - 8892*x^17 - 82988*x^16 + 568691*x^15 + 488956*x^14 + 27309015*x^13 + 83250417*x^12 - 666527265*x^11 + 3371076691*x^10 - 45350489518*x^9 + 323098105759*x^8 - 1640795352234*x^7 + 8669584750392*x^6 - 33274597103613*x^5 + 77339144364048*x^4 - 119648150339229*x^3 + 126007273791531*x^2 - 75637782101187*x + 39680501725269, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 16 x^{20} - 336 x^{19} - 300 x^{18} - 8892 x^{17} - 82988 x^{16} + 568691 x^{15} + 488956 x^{14} + 27309015 x^{13} + 83250417 x^{12} - 666527265 x^{11} + 3371076691 x^{10} - 45350489518 x^{9} + 323098105759 x^{8} - 1640795352234 x^{7} + 8669584750392 x^{6} - 33274597103613 x^{5} + 77339144364048 x^{4} - 119648150339229 x^{3} + 126007273791531 x^{2} - 75637782101187 x + 39680501725269 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-333299588378851543700346160352728825135889034361065589007483=-\,683^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $507.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $683$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(683\)
Dirichlet character group:    $\lbrace$$\chi_{683}(128,·)$, $\chi_{683}(1,·)$, $\chi_{683}(2,·)$, $\chi_{683}(427,·)$, $\chi_{683}(4,·)$, $\chi_{683}(342,·)$, $\chi_{683}(64,·)$, $\chi_{683}(8,·)$, $\chi_{683}(651,·)$, $\chi_{683}(256,·)$, $\chi_{683}(16,·)$, $\chi_{683}(341,·)$, $\chi_{683}(512,·)$, $\chi_{683}(667,·)$, $\chi_{683}(32,·)$, $\chi_{683}(555,·)$, $\chi_{683}(675,·)$, $\chi_{683}(679,·)$, $\chi_{683}(681,·)$, $\chi_{683}(682,·)$, $\chi_{683}(171,·)$, $\chi_{683}(619,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{4}{27} a^{5} + \frac{1}{27} a^{4} + \frac{1}{27} a^{3} - \frac{2}{27} a^{2} - \frac{2}{9} a$, $\frac{1}{27} a^{8} - \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{2}{27} a^{2} + \frac{2}{9} a$, $\frac{1}{81} a^{9} + \frac{1}{27} a^{6} - \frac{4}{27} a^{5} + \frac{1}{27} a^{4} - \frac{7}{81} a^{3} - \frac{2}{27} a^{2} + \frac{2}{9} a$, $\frac{1}{243} a^{10} + \frac{1}{243} a^{9} - \frac{1}{81} a^{8} + \frac{2}{81} a^{6} + \frac{5}{81} a^{5} + \frac{20}{243} a^{4} + \frac{20}{243} a^{3} - \frac{8}{81} a^{2} - \frac{4}{27} a$, $\frac{1}{243} a^{11} - \frac{1}{243} a^{9} + \frac{1}{81} a^{8} - \frac{1}{81} a^{7} + \frac{1}{27} a^{6} + \frac{14}{243} a^{5} + \frac{7}{243} a^{3} - \frac{4}{81} a^{2} - \frac{2}{27} a$, $\frac{1}{243} a^{12} + \frac{1}{243} a^{9} + \frac{1}{81} a^{8} + \frac{2}{243} a^{6} - \frac{4}{81} a^{5} - \frac{2}{27} a^{4} - \frac{7}{243} a^{3} + \frac{4}{81} a^{2} + \frac{2}{27} a$, $\frac{1}{729} a^{13} + \frac{1}{729} a^{12} - \frac{1}{729} a^{11} - \frac{1}{729} a^{10} - \frac{1}{243} a^{9} - \frac{1}{243} a^{8} + \frac{5}{729} a^{7} + \frac{5}{729} a^{6} - \frac{56}{729} a^{5} - \frac{2}{729} a^{4} - \frac{2}{27} a^{3} + \frac{4}{27} a$, $\frac{1}{6561} a^{14} - \frac{1}{6561} a^{13} - \frac{1}{2187} a^{12} + \frac{10}{6561} a^{11} - \frac{1}{6561} a^{10} - \frac{2}{2187} a^{9} + \frac{11}{6561} a^{8} + \frac{103}{6561} a^{7} + \frac{104}{2187} a^{6} - \frac{601}{6561} a^{5} - \frac{401}{6561} a^{4} - \frac{119}{729} a^{3} + \frac{37}{81} a^{2} + \frac{58}{243} a - \frac{4}{9}$, $\frac{1}{6561} a^{15} - \frac{4}{6561} a^{13} + \frac{7}{6561} a^{12} + \frac{1}{729} a^{11} - \frac{7}{6561} a^{10} + \frac{5}{6561} a^{9} + \frac{38}{2187} a^{8} - \frac{71}{6561} a^{7} - \frac{46}{6561} a^{6} - \frac{253}{2187} a^{5} + \frac{958}{6561} a^{4} - \frac{83}{729} a^{3} + \frac{70}{243} a^{2} + \frac{58}{243} a - \frac{4}{9}$, $\frac{1}{19683} a^{16} + \frac{1}{19683} a^{15} + \frac{1}{19683} a^{14} - \frac{11}{19683} a^{13} - \frac{8}{19683} a^{12} - \frac{20}{19683} a^{11} + \frac{2}{19683} a^{10} + \frac{116}{19683} a^{9} - \frac{118}{19683} a^{8} + \frac{353}{19683} a^{7} + \frac{224}{19683} a^{6} - \frac{1249}{19683} a^{5} + \frac{947}{6561} a^{4} - \frac{22}{243} a^{3} + \frac{296}{729} a^{2} + \frac{32}{243} a + \frac{4}{9}$, $\frac{1}{177147} a^{17} - \frac{4}{177147} a^{16} + \frac{5}{177147} a^{15} + \frac{11}{177147} a^{14} - \frac{16}{177147} a^{13} + \frac{326}{177147} a^{12} - \frac{11}{59049} a^{11} + \frac{259}{177147} a^{10} - \frac{5}{177147} a^{9} - \frac{1865}{177147} a^{8} + \frac{2059}{177147} a^{7} + \frac{2644}{177147} a^{6} + \frac{16889}{177147} a^{5} - \frac{8089}{59049} a^{4} - \frac{580}{6561} a^{3} + \frac{1982}{6561} a^{2} + \frac{689}{2187} a + \frac{40}{81}$, $\frac{1}{35606547} a^{18} + \frac{77}{35606547} a^{17} + \frac{626}{35606547} a^{16} + \frac{2252}{35606547} a^{15} + \frac{1010}{35606547} a^{14} - \frac{25}{35606547} a^{13} - \frac{18461}{11868849} a^{12} - \frac{4871}{35606547} a^{11} + \frac{19381}{35606547} a^{10} + \frac{83131}{35606547} a^{9} - \frac{194825}{35606547} a^{8} - \frac{25922}{35606547} a^{7} + \frac{1617719}{35606547} a^{6} - \frac{1948462}{11868849} a^{5} - \frac{166840}{1318761} a^{4} - \frac{21238}{1318761} a^{3} + \frac{136886}{439587} a^{2} - \frac{2036}{5427} a - \frac{2}{9}$, $\frac{1}{106819641} a^{19} + \frac{1}{106819641} a^{18} - \frac{368}{35606547} a^{16} - \frac{970}{35606547} a^{15} + \frac{2612}{35606547} a^{14} + \frac{4003}{106819641} a^{13} - \frac{170327}{106819641} a^{12} - \frac{48830}{35606547} a^{11} + \frac{29510}{35606547} a^{10} - \frac{142703}{35606547} a^{9} + \frac{154918}{35606547} a^{8} - \frac{641249}{106819641} a^{7} - \frac{3004622}{106819641} a^{6} + \frac{988676}{35606547} a^{5} - \frac{1496708}{11868849} a^{4} + \frac{401068}{3956283} a^{3} + \frac{214460}{1318761} a^{2} - \frac{86276}{439587} a - \frac{31}{243}$, $\frac{1}{320458923} a^{20} - \frac{1}{320458923} a^{19} + \frac{1}{320458923} a^{18} + \frac{37}{35606547} a^{17} - \frac{1216}{106819641} a^{16} - \frac{2489}{35606547} a^{15} + \frac{20908}{320458923} a^{14} + \frac{127916}{320458923} a^{13} - \frac{262631}{320458923} a^{12} + \frac{114460}{106819641} a^{11} + \frac{128002}{106819641} a^{10} - \frac{108389}{35606547} a^{9} - \frac{3639215}{320458923} a^{8} + \frac{1285661}{320458923} a^{7} - \frac{859445}{320458923} a^{6} - \frac{1067917}{106819641} a^{5} + \frac{5013193}{35606547} a^{4} - \frac{639746}{11868849} a^{3} + \frac{1577939}{3956283} a^{2} + \frac{148939}{1318761} a + \frac{221}{729}$, $\frac{1}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{21} - \frac{20914930649745056106010705078182078600470263875520844911613411672207007095341044401317}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{20} - \frac{58867053491530555344532747017141084812565336034603815176660421486324766952563205220908}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{19} + \frac{88085396371585485628621307358523091323234447229183040223713166497686012222120073214582}{6387462245545392033433113061030723688222728308315709834749774071744513670083982423041552207943} a^{18} + \frac{3437058532167453142853494727186377727454914862714895581680100146105550672195762218879639}{6387462245545392033433113061030723688222728308315709834749774071744513670083982423041552207943} a^{17} + \frac{7552543871270522970801489757414004659054394456902731836756972350395166117458524927021377}{709718027282821337048123673447858187580303145368412203861086007971612630009331380337950245327} a^{16} + \frac{449497997399157149568141256252476292782321431102593577352931303686983355918474633148216099}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{15} - \frac{952267402668237045365213014306564808760727636009859210148313097876958643289728519990867546}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{14} - \frac{12982395511950111603808168020859724008656383346600384993870656952030244810553672893720687610}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{13} - \frac{4415941187744385247827787203791203861838397252883355828439453167822159422674903986344428574}{6387462245545392033433113061030723688222728308315709834749774071744513670083982423041552207943} a^{12} - \frac{4898618530342195227338761955506518368624932043832408365046009661849290413671013546514493934}{6387462245545392033433113061030723688222728308315709834749774071744513670083982423041552207943} a^{11} + \frac{157116683903095054653398107402600283421646099962880627466777972223807514548393398785412501}{2129154081848464011144371020343574562740909436105236611583258023914837890027994141013850735981} a^{10} - \frac{41863155010986397089698562092815418937477221634277029821553553657121531420225869259926013600}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{9} + \frac{263530508040486664236704091392253770320282066436507823722789510454863009414457808480496598356}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{8} - \frac{288112559871381706172067076103857262992557589842151483425162635128508037811383364345367851217}{19162386736636176100299339183092171064668184924947129504249322215233541010251947269124656623829} a^{7} - \frac{101388794367919443253751791625797390362802318244688939772621210568769191583478254066355869215}{2129154081848464011144371020343574562740909436105236611583258023914837890027994141013850735981} a^{6} + \frac{102799502801647138325818436849914858001419331833802462215082706056650617657511119675975883585}{709718027282821337048123673447858187580303145368412203861086007971612630009331380337950245327} a^{5} - \frac{101267647001098776104571322830463215623244176869041268003155682517570474021007406872080006869}{709718027282821337048123673447858187580303145368412203861086007971612630009331380337950245327} a^{4} - \frac{1279972275491774193258134106756312040580176571626281635157559781403389208582029805613201139}{78857558586980148560902630383095354175589238374268022651231778663512514445481264481994471703} a^{3} + \frac{3207244137439585472553107815509190411792309372436794775910504193087752491250996146582253599}{26285852862326716186967543461031784725196412791422674217077259554504171481827088160664823901} a^{2} - \frac{285358813144777175944845016896049737096767638718775779814062346582626788584778821971657684}{710428455738559896945068742190048235816119264633045249110196204175788418427759139477427673} a - \frac{1479406376602837916387766842611131964418977227534159426244350420523485767823620821742485}{14530598597195531336079349619144159604862583079835640805460066088725357369721994560898189}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{1047240485}$, which has order $1047240485$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2331588007058459.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-683}) \), 11.11.22090575837180674640752471449.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ ${\href{/LocalNumberField/3.1.0.1}{1} }^{22}$ $22$ $22$ $22$ $22$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ $22$ $22$ $22$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
683Data not computed