Normalized defining polynomial
\( x^{22} - 2 x^{21} + 14 x^{20} - 22 x^{19} + 110 x^{18} - 154 x^{17} + 537 x^{16} - 588 x^{15} + 1719 x^{14} - 1556 x^{13} + 3922 x^{12} - 2650 x^{11} + 6120 x^{10} - 3124 x^{9} + 6945 x^{8} - 2284 x^{7} + 4957 x^{6} - 987 x^{5} + 2301 x^{4} - 102 x^{3} + 153 x^{2} + 9 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-328417397709776899721953240383603=-\,3^{15}\cdot 4784137656827^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 4784137656827$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{18} - \frac{1}{3} a^{17} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{20} + \frac{1}{9} a^{19} + \frac{2}{9} a^{18} + \frac{2}{9} a^{17} + \frac{2}{9} a^{16} - \frac{4}{9} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{2}{9} a^{9} - \frac{1}{3} a^{8} + \frac{2}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{9} a^{5} - \frac{2}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{2262805916248746357646306833} a^{21} + \frac{112831343042116330900187656}{2262805916248746357646306833} a^{20} - \frac{50522138475436288506298645}{2262805916248746357646306833} a^{19} + \frac{811737655407381466369299578}{2262805916248746357646306833} a^{18} - \frac{2116806844233454278999013}{10724198655207328709224203} a^{17} + \frac{691415038433011562254590668}{2262805916248746357646306833} a^{16} + \frac{359447253722398671740184806}{754268638749582119215435611} a^{15} + \frac{144597358044405217978600685}{754268638749582119215435611} a^{14} - \frac{285441552355952260294024739}{754268638749582119215435611} a^{13} + \frac{303698194474752399929301748}{2262805916248746357646306833} a^{12} - \frac{780239460358690101645601898}{2262805916248746357646306833} a^{11} + \frac{1091324811403953580430175443}{2262805916248746357646306833} a^{10} + \frac{5270264760202844144023024}{251422879583194039738478537} a^{9} + \frac{277204471372464660616247930}{2262805916248746357646306833} a^{8} - \frac{93544956102475548782948246}{251422879583194039738478537} a^{7} - \frac{821359114051573934633981575}{2262805916248746357646306833} a^{6} - \frac{80733913558430485926404438}{2262805916248746357646306833} a^{5} - \frac{53695409728364164375645626}{251422879583194039738478537} a^{4} - \frac{240697586499374047781308715}{754268638749582119215435611} a^{3} - \frac{230479422346177341685831523}{754268638749582119215435611} a^{2} - \frac{55093964745850845885593892}{251422879583194039738478537} a + \frac{124860235505436232270506331}{251422879583194039738478537}$
Class group and class number
$C_{16}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{651010095533006858750918}{2262805916248746357646306833} a^{21} + \frac{19824223622364690837738649}{2262805916248746357646306833} a^{20} - \frac{46310417890235158211897068}{2262805916248746357646306833} a^{19} + \frac{271850361092604752673106082}{2262805916248746357646306833} a^{18} - \frac{2258919037112229634417855}{10724198655207328709224203} a^{17} + \frac{2112388589180142391912411034}{2262805916248746357646306833} a^{16} - \frac{1056730703859112359840058394}{754268638749582119215435611} a^{15} + \frac{1125910646697722445067691226}{251422879583194039738478537} a^{14} - \frac{3919408226557600713404878958}{754268638749582119215435611} a^{13} + \frac{31904387531136396622486345729}{2262805916248746357646306833} a^{12} - \frac{30416154863593231980145962560}{2262805916248746357646306833} a^{11} + \frac{71470174693667180172077255714}{2262805916248746357646306833} a^{10} - \frac{5615881645072470930191454145}{251422879583194039738478537} a^{9} + \frac{109048155087548187051240838079}{2262805916248746357646306833} a^{8} - \frac{19437095215588670734660889912}{754268638749582119215435611} a^{7} + \frac{121256822101961890685434088582}{2262805916248746357646306833} a^{6} - \frac{40978984356780850913551484420}{2262805916248746357646306833} a^{5} + \frac{9254882920684126105202169547}{251422879583194039738478537} a^{4} - \frac{1868788228968458340243262235}{251422879583194039738478537} a^{3} + \frac{12956663028979796458549019929}{754268638749582119215435611} a^{2} - \frac{98480677150375312832796385}{251422879583194039738478537} a + \frac{287081910918833708882533347}{251422879583194039738478537} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2614417.99814 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for t22n47 are not computed |
| Character table for t22n47 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.11.129171716734329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | $18{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 4784137656827 | Data not computed | ||||||