Normalized defining polynomial
\( x^{22} + 161 x^{20} + 11270 x^{18} + 449673 x^{16} + 11265492 x^{14} + 184003036 x^{12} + 1969914856 x^{10} + 13543164635 x^{8} + 56881291467 x^{6} + 132723013423 x^{4} + 142932475994 x^{2} + 45478515089 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-327357956601100418172270186446803699295584256=-\,2^{22}\cdot 7^{11}\cdot 23^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(644=2^{2}\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{644}(1,·)$, $\chi_{644}(643,·)$, $\chi_{644}(197,·)$, $\chi_{644}(449,·)$, $\chi_{644}(393,·)$, $\chi_{644}(111,·)$, $\chi_{644}(141,·)$, $\chi_{644}(195,·)$, $\chi_{644}(533,·)$, $\chi_{644}(475,·)$, $\chi_{644}(29,·)$, $\chi_{644}(225,·)$, $\chi_{644}(419,·)$, $\chi_{644}(615,·)$, $\chi_{644}(169,·)$, $\chi_{644}(559,·)$, $\chi_{644}(561,·)$, $\chi_{644}(83,·)$, $\chi_{644}(503,·)$, $\chi_{644}(251,·)$, $\chi_{644}(85,·)$, $\chi_{644}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{2401} a^{8}$, $\frac{1}{2401} a^{9}$, $\frac{1}{16807} a^{10}$, $\frac{1}{16807} a^{11}$, $\frac{1}{117649} a^{12}$, $\frac{1}{117649} a^{13}$, $\frac{1}{823543} a^{14}$, $\frac{1}{823543} a^{15}$, $\frac{1}{5764801} a^{16}$, $\frac{1}{5764801} a^{17}$, $\frac{1}{40353607} a^{18}$, $\frac{1}{40353607} a^{19}$, $\frac{1}{282475249} a^{20}$, $\frac{1}{282475249} a^{21}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-161}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 23 | Data not computed | ||||||