Properties

Label 22.0.30401185705...1547.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,3^{11}\cdot 23^{20}$
Root discriminant $29.96$
Ramified primes $3, 23$
Class number $23$ (GRH)
Class group $[23]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 51, 20, 400, -161, 1358, -251, 2324, -574, 2527, -498, 1776, -355, 883, -145, 301, -46, 73, -8, 11, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 11*x^20 - 8*x^19 + 73*x^18 - 46*x^17 + 301*x^16 - 145*x^15 + 883*x^14 - 355*x^13 + 1776*x^12 - 498*x^11 + 2527*x^10 - 574*x^9 + 2324*x^8 - 251*x^7 + 1358*x^6 - 161*x^5 + 400*x^4 + 20*x^3 + 51*x^2 - 6*x + 1)
 
gp: K = bnfinit(x^22 - x^21 + 11*x^20 - 8*x^19 + 73*x^18 - 46*x^17 + 301*x^16 - 145*x^15 + 883*x^14 - 355*x^13 + 1776*x^12 - 498*x^11 + 2527*x^10 - 574*x^9 + 2324*x^8 - 251*x^7 + 1358*x^6 - 161*x^5 + 400*x^4 + 20*x^3 + 51*x^2 - 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 11 x^{20} - 8 x^{19} + 73 x^{18} - 46 x^{17} + 301 x^{16} - 145 x^{15} + 883 x^{14} - 355 x^{13} + 1776 x^{12} - 498 x^{11} + 2527 x^{10} - 574 x^{9} + 2324 x^{8} - 251 x^{7} + 1358 x^{6} - 161 x^{5} + 400 x^{4} + 20 x^{3} + 51 x^{2} - 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-304011857053427966889939263171547=-\,3^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(69=3\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{69}(64,·)$, $\chi_{69}(1,·)$, $\chi_{69}(2,·)$, $\chi_{69}(4,·)$, $\chi_{69}(8,·)$, $\chi_{69}(13,·)$, $\chi_{69}(16,·)$, $\chi_{69}(25,·)$, $\chi_{69}(26,·)$, $\chi_{69}(29,·)$, $\chi_{69}(31,·)$, $\chi_{69}(32,·)$, $\chi_{69}(35,·)$, $\chi_{69}(41,·)$, $\chi_{69}(47,·)$, $\chi_{69}(49,·)$, $\chi_{69}(50,·)$, $\chi_{69}(52,·)$, $\chi_{69}(55,·)$, $\chi_{69}(58,·)$, $\chi_{69}(59,·)$, $\chi_{69}(62,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2399572293754950878352937} a^{21} + \frac{308744703297147194070311}{2399572293754950878352937} a^{20} + \frac{88659209219352668960482}{2399572293754950878352937} a^{19} - \frac{907822485756664737749554}{2399572293754950878352937} a^{18} - \frac{1042019138452476636956430}{2399572293754950878352937} a^{17} - \frac{577190319491765609678848}{2399572293754950878352937} a^{16} + \frac{463114657921309389036085}{2399572293754950878352937} a^{15} + \frac{86466375033073064313788}{2399572293754950878352937} a^{14} - \frac{486489714829787901341730}{2399572293754950878352937} a^{13} - \frac{450837216637162129150073}{2399572293754950878352937} a^{12} - \frac{320414944655069441114285}{2399572293754950878352937} a^{11} + \frac{983567855953000123034087}{2399572293754950878352937} a^{10} - \frac{743678039035852251665094}{2399572293754950878352937} a^{9} - \frac{1090171357346250082163579}{2399572293754950878352937} a^{8} - \frac{132012807335142334236934}{2399572293754950878352937} a^{7} - \frac{674991336467845892683651}{2399572293754950878352937} a^{6} - \frac{218471332042608447330226}{2399572293754950878352937} a^{5} - \frac{486944050520569331229800}{2399572293754950878352937} a^{4} + \frac{582045276855027803441066}{2399572293754950878352937} a^{3} - \frac{821889983352727133765399}{2399572293754950878352937} a^{2} - \frac{899290321817951869787853}{2399572293754950878352937} a + \frac{1130012207994179206961748}{2399572293754950878352937}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{23}$, which has order $23$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{365951618498234120673324}{2399572293754950878352937} a^{21} - \frac{345158176742881962674269}{2399572293754950878352937} a^{20} + \frac{3982551148800568962307725}{2399572293754950878352937} a^{19} - \frac{2672705178337699431702962}{2399572293754950878352937} a^{18} + \frac{26307336342927927421700759}{2399572293754950878352937} a^{17} - \frac{15101698170156634653261844}{2399572293754950878352937} a^{16} + \frac{107617446263662484381462434}{2399572293754950878352937} a^{15} - \frac{45547391916985823252087632}{2399572293754950878352937} a^{14} + \frac{313725721647580011080943047}{2399572293754950878352937} a^{13} - \frac{107449102908277895677240354}{2399572293754950878352937} a^{12} + \frac{624208609956033132913341787}{2399572293754950878352937} a^{11} - \frac{134857719815979527039251119}{2399572293754950878352937} a^{10} + \frac{878677052495348964966074511}{2399572293754950878352937} a^{9} - \frac{141651134653593414510577387}{2399572293754950878352937} a^{8} + \frac{790014705504716141562122246}{2399572293754950878352937} a^{7} - \frac{23488836215950872022333895}{2399572293754950878352937} a^{6} + \frac{450312759268360585572496091}{2399572293754950878352937} a^{5} - \frac{18986755263211477402816046}{2399572293754950878352937} a^{4} + \frac{121749280575651133363463060}{2399572293754950878352937} a^{3} + \frac{25197200282875729630436597}{2399572293754950878352937} a^{2} + \frac{14245208898295452180533159}{2399572293754950878352937} a + \frac{757739841033766827607698}{2399572293754950878352937} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.82438 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ R $22$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
23Data not computed