Normalized defining polynomial
\( x^{22} + 66 x^{20} + 1815 x^{18} + 27225 x^{16} + 245025 x^{14} + 1367784 x^{12} + 4714281 x^{10} + 9653985 x^{8} + 10895445 x^{6} + 6145227 x^{4} + 1617165 x^{2} + 156816 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-30154419159814893789975560365370581492704546816=-\,2^{12}\cdot 3^{20}\cdot 11^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{99} a^{11}$, $\frac{1}{99} a^{12}$, $\frac{1}{99} a^{13}$, $\frac{1}{99} a^{14}$, $\frac{1}{99} a^{15}$, $\frac{1}{198} a^{16} - \frac{1}{198} a^{15} - \frac{1}{198} a^{13} - \frac{1}{198} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{594} a^{17} - \frac{1}{198} a^{15} - \frac{1}{198} a^{14} - \frac{1}{198} a^{12} - \frac{1}{198} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{594} a^{18} - \frac{1}{198} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{594} a^{19} - \frac{1}{198} a^{12} - \frac{1}{198} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{32585979072438} a^{20} - \frac{1563139076}{5430996512073} a^{18} - \frac{4116031192}{1810332170691} a^{16} - \frac{15419282816}{5430996512073} a^{14} - \frac{1}{198} a^{13} - \frac{26724112675}{10861993024146} a^{12} - \frac{1}{198} a^{11} - \frac{17881692797}{109717101254} a^{10} - \frac{1}{6} a^{9} + \frac{17820180481}{109717101254} a^{8} - \frac{1}{6} a^{7} - \frac{10182776954}{164575651881} a^{6} - \frac{10824599323}{54858550627} a^{4} - \frac{1}{2} a^{3} - \frac{418431382}{54858550627} a^{2} + \frac{26834447826}{54858550627}$, $\frac{1}{65171958144876} a^{21} - \frac{781569538}{5430996512073} a^{19} - \frac{19230010829}{65171958144876} a^{17} + \frac{8006661665}{7241328682764} a^{15} + \frac{82992988579}{21723986048292} a^{13} - \frac{1}{198} a^{12} - \frac{34836258733}{10861993024146} a^{11} - \frac{1}{6} a^{10} - \frac{56256559811}{658302607524} a^{9} - \frac{1}{6} a^{8} - \frac{75224104535}{658302607524} a^{7} - \frac{1}{6} a^{6} + \frac{33209351981}{219434202508} a^{5} + \frac{54021687863}{219434202508} a^{3} - \frac{1}{2} a^{2} - \frac{1189654975}{219434202508} a$
Class group and class number
$C_{2}\times C_{12506}$, which has order $25012$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24766561934.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.2713285598714072534889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||