Normalized defining polynomial
\( x^{22} - x^{21} - 4 x^{20} + 3 x^{19} + 11 x^{18} - 6 x^{17} - 18 x^{16} + 2 x^{15} + 26 x^{14} - 8 x^{13} - 18 x^{12} + 23 x^{11} + 12 x^{10} - 27 x^{9} - 30 x^{8} + 23 x^{7} + 19 x^{6} + 3 x^{5} + 5 x^{4} - 26 x^{3} + 8 x^{2} + 2 x + 1 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 11]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-2988811416117414420033765003\)\(\medspace = -\,3^{11}\cdot 167^{10}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $17.74$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 167$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{15} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{15} - \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{85} a^{18} + \frac{8}{85} a^{17} + \frac{6}{85} a^{16} + \frac{1}{5} a^{15} - \frac{1}{5} a^{14} + \frac{13}{85} a^{13} + \frac{12}{85} a^{12} - \frac{33}{85} a^{11} - \frac{31}{85} a^{9} + \frac{2}{85} a^{8} + \frac{19}{85} a^{7} - \frac{18}{85} a^{6} - \frac{31}{85} a^{5} + \frac{41}{85} a^{4} - \frac{41}{85} a^{3} + \frac{29}{85} a^{2} + \frac{6}{17} a + \frac{4}{17}$, $\frac{1}{85} a^{19} - \frac{7}{85} a^{17} + \frac{3}{85} a^{16} - \frac{2}{5} a^{15} - \frac{38}{85} a^{14} - \frac{7}{85} a^{13} + \frac{7}{85} a^{12} + \frac{9}{85} a^{11} + \frac{3}{85} a^{10} + \frac{12}{85} a^{9} + \frac{37}{85} a^{8} - \frac{2}{5} a^{7} - \frac{6}{85} a^{6} + \frac{22}{85} a^{4} + \frac{1}{5} a^{3} - \frac{32}{85} a^{2} + \frac{18}{85} a - \frac{41}{85}$, $\frac{1}{85} a^{20} + \frac{8}{85} a^{17} + \frac{8}{85} a^{16} - \frac{21}{85} a^{15} + \frac{2}{17} a^{14} - \frac{4}{85} a^{13} - \frac{26}{85} a^{12} - \frac{41}{85} a^{11} - \frac{39}{85} a^{10} + \frac{41}{85} a^{9} + \frac{31}{85} a^{8} + \frac{42}{85} a^{7} - \frac{24}{85} a^{6} - \frac{5}{17} a^{5} - \frac{19}{85} a^{4} - \frac{13}{85} a^{3} - \frac{18}{85} a - \frac{13}{85}$, $\frac{1}{10500305} a^{21} - \frac{1946}{617665} a^{20} + \frac{6791}{10500305} a^{19} + \frac{53459}{10500305} a^{18} + \frac{4252}{2100061} a^{17} + \frac{218369}{10500305} a^{16} - \frac{10972}{51221} a^{15} + \frac{3597096}{10500305} a^{14} + \frac{4053216}{10500305} a^{13} + \frac{15072}{617665} a^{12} - \frac{152688}{456535} a^{11} - \frac{128189}{456535} a^{10} + \frac{262911}{617665} a^{9} - \frac{1293033}{10500305} a^{8} + \frac{403505}{2100061} a^{7} + \frac{911804}{10500305} a^{6} - \frac{829627}{10500305} a^{5} + \frac{4011368}{10500305} a^{4} - \frac{1286802}{10500305} a^{3} + \frac{237819}{617665} a^{2} + \frac{206699}{617665} a + \frac{1171814}{10500305}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{252771}{2100061} a^{21} + \frac{1971991}{10500305} a^{20} + \frac{3815992}{10500305} a^{19} - \frac{7438603}{10500305} a^{18} - \frac{10147709}{10500305} a^{17} + \frac{3741150}{2100061} a^{16} + \frac{22072}{15065} a^{15} - \frac{23383672}{10500305} a^{14} - \frac{29887762}{10500305} a^{13} + \frac{40929768}{10500305} a^{12} + \frac{870837}{456535} a^{11} - \frac{2069523}{456535} a^{10} + \frac{1134992}{2100061} a^{9} + \frac{45113928}{10500305} a^{8} - \frac{3164372}{10500305} a^{7} - \frac{69379161}{10500305} a^{6} + \frac{263964}{10500305} a^{5} + \frac{32881823}{10500305} a^{4} + \frac{351687}{617665} a^{3} + \frac{36666409}{10500305} a^{2} - \frac{31325554}{10500305} a + \frac{2406049}{10500305} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 138999.076948 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 44 |
The 14 conjugacy class representatives for $D_{22}$ |
Character table for $D_{22}$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 11.1.129891985607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $22$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
$167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |