Properties

Label 22.0.28542099180...7792.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,2^{33}\cdot 67^{20}$
Root discriminant $129.30$
Ramified primes $2, 67$
Class number $232331$ (GRH)
Class group $[232331]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![210368707, -395494894, 533811683, -525754586, 410278465, -244699026, 109540538, -32528018, 3820816, 1514350, 59133, -1124536, 736428, -124424, -64260, 29626, 2299, -3636, 494, 146, -37, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 - 37*x^20 + 146*x^19 + 494*x^18 - 3636*x^17 + 2299*x^16 + 29626*x^15 - 64260*x^14 - 124424*x^13 + 736428*x^12 - 1124536*x^11 + 59133*x^10 + 1514350*x^9 + 3820816*x^8 - 32528018*x^7 + 109540538*x^6 - 244699026*x^5 + 410278465*x^4 - 525754586*x^3 + 533811683*x^2 - 395494894*x + 210368707)
 
gp: K = bnfinit(x^22 - 2*x^21 - 37*x^20 + 146*x^19 + 494*x^18 - 3636*x^17 + 2299*x^16 + 29626*x^15 - 64260*x^14 - 124424*x^13 + 736428*x^12 - 1124536*x^11 + 59133*x^10 + 1514350*x^9 + 3820816*x^8 - 32528018*x^7 + 109540538*x^6 - 244699026*x^5 + 410278465*x^4 - 525754586*x^3 + 533811683*x^2 - 395494894*x + 210368707, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} - 37 x^{20} + 146 x^{19} + 494 x^{18} - 3636 x^{17} + 2299 x^{16} + 29626 x^{15} - 64260 x^{14} - 124424 x^{13} + 736428 x^{12} - 1124536 x^{11} + 59133 x^{10} + 1514350 x^{9} + 3820816 x^{8} - 32528018 x^{7} + 109540538 x^{6} - 244699026 x^{5} + 410278465 x^{4} - 525754586 x^{3} + 533811683 x^{2} - 395494894 x + 210368707 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-28542099180404529250131657131852910655063457792=-\,2^{33}\cdot 67^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $129.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(536=2^{3}\cdot 67\)
Dirichlet character group:    $\lbrace$$\chi_{536}(1,·)$, $\chi_{536}(131,·)$, $\chi_{536}(129,·)$, $\chi_{536}(9,·)$, $\chi_{536}(81,·)$, $\chi_{536}(403,·)$, $\chi_{536}(89,·)$, $\chi_{536}(225,·)$, $\chi_{536}(25,·)$, $\chi_{536}(283,·)$, $\chi_{536}(427,·)$, $\chi_{536}(107,·)$, $\chi_{536}(417,·)$, $\chi_{536}(411,·)$, $\chi_{536}(193,·)$, $\chi_{536}(491,·)$, $\chi_{536}(483,·)$, $\chi_{536}(241,·)$, $\chi_{536}(91,·)$, $\chi_{536}(531,·)$, $\chi_{536}(265,·)$, $\chi_{536}(59,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{256447} a^{20} + \frac{70887}{256447} a^{19} - \frac{13300}{256447} a^{18} + \frac{107472}{256447} a^{17} + \frac{15692}{256447} a^{16} - \frac{39048}{256447} a^{15} - \frac{95840}{256447} a^{14} - \frac{126623}{256447} a^{13} + \frac{80757}{256447} a^{12} + \frac{24720}{256447} a^{11} + \frac{56656}{256447} a^{10} + \frac{68559}{256447} a^{9} + \frac{25699}{256447} a^{8} - \frac{96037}{256447} a^{7} + \frac{118286}{256447} a^{6} + \frac{54895}{256447} a^{5} + \frac{64740}{256447} a^{4} + \frac{48502}{256447} a^{3} - \frac{15421}{256447} a^{2} - \frac{124532}{256447} a - \frac{84802}{256447}$, $\frac{1}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{21} - \frac{1830602609038389833030758423431597333434495249870275176515168879632}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{20} - \frac{326955823583929362573550668005884946617705912456734446720489400258715195}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{19} - \frac{94282987979178785260144058863468768423537358513086795302532914166971101}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{18} - \frac{300533019947828482337431414130607547665475467506207969225913821174868379}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{17} - \frac{4623650781530798324304553692653056337555916571875784409022938217708768}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{16} + \frac{525905607516888678286252065706909524388165113132951060318845158103516146}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{15} - \frac{8342091726722125414103435815463791877138011817243657993421631599471426}{36378252039417654961061355992162689006296219931047954910143082334459539} a^{14} + \frac{4889130849650901794006457545275012470070631323129470529802590787337256}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{13} - \frac{180264738558033712506844459511763305398999251789801084807332330407497326}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{12} + \frac{10217446144079354917558157622635192329683835655724273283033943109344719}{36378252039417654961061355992162689006296219931047954910143082334459539} a^{11} + \frac{259809157538917667437485013327729588275506933687578525523428075503167337}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{10} - \frac{366816427302712375920985988107763934713380777714127758897216519187687668}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{9} + \frac{76422273756686806736272030509509104954517960727944513807779013651614061}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{8} - \frac{456097503260145811574859839833644038505856772611619695656557291199821530}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{7} - \frac{66282925800718490140515551219517120674577676879102946279553086011578987}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{6} + \frac{371142805298792398435220490225630682444701936207783451975902563354363661}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{5} + \frac{81511490471741065675778164339446424936261851374879283653465548532804863}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{4} + \frac{459800256539537989260960174997130615815467206588426817605368174130090050}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{3} - \frac{325725036508117036964626145186020507893935881313583958755944396502463518}{1054969309143111993870779323772717981182590378000390692394149387699326631} a^{2} + \frac{24185233808946706454497353428058247926722475282360576335018124026116886}{1054969309143111993870779323772717981182590378000390692394149387699326631} a + \frac{257672427583647223847363367051622286700829177804860668766353280833127545}{1054969309143111993870779323772717981182590378000390692394149387699326631}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{232331}$, which has order $232331$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 338444542.042557 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-2}) \), 11.11.1822837804551761449.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ $22$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$67$67.11.10.1$x^{11} - 67$$11$$1$$10$$C_{11}$$[\ ]_{11}$
67.11.10.1$x^{11} - 67$$11$$1$$10$$C_{11}$$[\ ]_{11}$