Normalized defining polynomial
\(x^{22} - 4 x^{21} + 6 x^{20} - 8 x^{19} + 15 x^{18} - 9 x^{17} - 28 x^{16} + 46 x^{15} - 14 x^{14} + 23 x^{13} + 13 x^{12} - 297 x^{11} + 488 x^{10} - 240 x^{9} + 28 x^{8} - 134 x^{7} + 194 x^{6} - 130 x^{5} + 72 x^{4} - 28 x^{3} + 8 x^{2} - 2 x + 1\)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 11]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-2817611963463158891460983\)\(\medspace = -\,167^{11}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $12.92$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $167$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $22$ | ||
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{15} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{85} a^{19} + \frac{7}{85} a^{18} - \frac{2}{85} a^{17} + \frac{38}{85} a^{15} - \frac{8}{85} a^{14} - \frac{14}{85} a^{13} - \frac{22}{85} a^{12} + \frac{14}{85} a^{11} - \frac{1}{17} a^{10} - \frac{39}{85} a^{9} - \frac{2}{5} a^{8} - \frac{2}{85} a^{7} + \frac{13}{85} a^{6} + \frac{18}{85} a^{5} + \frac{21}{85} a^{4} + \frac{16}{85} a^{3} + \frac{8}{85} a^{2} + \frac{5}{17} a + \frac{13}{85}$, $\frac{1}{1105} a^{20} - \frac{1}{221} a^{19} + \frac{84}{1105} a^{18} + \frac{24}{1105} a^{17} - \frac{1}{85} a^{16} - \frac{532}{1105} a^{15} - \frac{89}{221} a^{14} + \frac{44}{1105} a^{13} + \frac{59}{221} a^{12} - \frac{479}{1105} a^{11} - \frac{268}{1105} a^{10} - \frac{3}{17} a^{9} + \frac{372}{1105} a^{8} - \frac{14}{1105} a^{7} - \frac{427}{1105} a^{6} - \frac{144}{1105} a^{5} - \frac{49}{1105} a^{4} - \frac{167}{1105} a^{3} - \frac{88}{1105} a^{2} + \frac{206}{1105} a - \frac{122}{1105}$, $\frac{1}{1029013899081155} a^{21} - \frac{138379852837}{1029013899081155} a^{20} - \frac{317079791929}{205802779816231} a^{19} - \frac{5731667921462}{1029013899081155} a^{18} + \frac{5341662730642}{79154915313935} a^{17} - \frac{2253417416977}{1029013899081155} a^{16} + \frac{188123120517446}{1029013899081155} a^{15} - \frac{18268489988497}{1029013899081155} a^{14} + \frac{287038856348799}{1029013899081155} a^{13} + \frac{14040616385044}{1029013899081155} a^{12} + \frac{228085414110377}{1029013899081155} a^{11} + \frac{7044091527234}{15830983062787} a^{10} + \frac{278340034354182}{1029013899081155} a^{9} + \frac{80417245071714}{205802779816231} a^{8} + \frac{377831056209817}{1029013899081155} a^{7} + \frac{40939162787522}{1029013899081155} a^{6} + \frac{346853154485672}{1029013899081155} a^{5} + \frac{20846897041610}{205802779816231} a^{4} - \frac{270886032588129}{1029013899081155} a^{3} + \frac{448462241310497}{1029013899081155} a^{2} + \frac{208494004079369}{1029013899081155} a - \frac{34349813749062}{79154915313935}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1029.39037079 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 22 |
The 7 conjugacy class representatives for $D_{11}$ |
Character table for $D_{11}$ |
Intermediate fields
\(\Q(\sqrt{-167}) \), 11.1.129891985607.1 x11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 11 sibling: | 11.1.129891985607.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$167$ | 167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |