Properties

Label 22.0.27740843969...9811.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,11^{11}\cdot 89^{20}$
Root discriminant $196.28$
Ramified primes $11, 89$
Class number $11911493$ (GRH)
Class group $[23, 517891]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5354971187, -5254555364, 5644816006, -2616581008, 1436734353, -556676137, 358371438, -174132886, 63615149, -12380083, 4035441, -3103687, 1731641, -300133, -84841, 16196, 18523, -5876, -383, 337, -12, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 - 12*x^20 + 337*x^19 - 383*x^18 - 5876*x^17 + 18523*x^16 + 16196*x^15 - 84841*x^14 - 300133*x^13 + 1731641*x^12 - 3103687*x^11 + 4035441*x^10 - 12380083*x^9 + 63615149*x^8 - 174132886*x^7 + 358371438*x^6 - 556676137*x^5 + 1436734353*x^4 - 2616581008*x^3 + 5644816006*x^2 - 5254555364*x + 5354971187)
 
gp: K = bnfinit(x^22 - 9*x^21 - 12*x^20 + 337*x^19 - 383*x^18 - 5876*x^17 + 18523*x^16 + 16196*x^15 - 84841*x^14 - 300133*x^13 + 1731641*x^12 - 3103687*x^11 + 4035441*x^10 - 12380083*x^9 + 63615149*x^8 - 174132886*x^7 + 358371438*x^6 - 556676137*x^5 + 1436734353*x^4 - 2616581008*x^3 + 5644816006*x^2 - 5254555364*x + 5354971187, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} - 12 x^{20} + 337 x^{19} - 383 x^{18} - 5876 x^{17} + 18523 x^{16} + 16196 x^{15} - 84841 x^{14} - 300133 x^{13} + 1731641 x^{12} - 3103687 x^{11} + 4035441 x^{10} - 12380083 x^{9} + 63615149 x^{8} - 174132886 x^{7} + 358371438 x^{6} - 556676137 x^{5} + 1436734353 x^{4} - 2616581008 x^{3} + 5644816006 x^{2} - 5254555364 x + 5354971187 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-277408439698811100133951455282636371147535786589811=-\,11^{11}\cdot 89^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $196.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(979=11\cdot 89\)
Dirichlet character group:    $\lbrace$$\chi_{979}(1,·)$, $\chi_{979}(67,·)$, $\chi_{979}(714,·)$, $\chi_{979}(395,·)$, $\chi_{979}(716,·)$, $\chi_{979}(461,·)$, $\chi_{979}(78,·)$, $\chi_{979}(331,·)$, $\chi_{979}(210,·)$, $\chi_{979}(846,·)$, $\chi_{979}(153,·)$, $\chi_{979}(538,·)$, $\chi_{979}(32,·)$, $\chi_{979}(802,·)$, $\chi_{979}(868,·)$, $\chi_{979}(364,·)$, $\chi_{979}(45,·)$, $\chi_{979}(879,·)$, $\chi_{979}(186,·)$, $\chi_{979}(892,·)$, $\chi_{979}(573,·)$, $\chi_{979}(639,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} - \frac{14}{37} a^{15} - \frac{14}{37} a^{14} + \frac{15}{37} a^{13} + \frac{7}{37} a^{12} + \frac{17}{37} a^{11} + \frac{12}{37} a^{10} - \frac{4}{37} a^{9} - \frac{3}{37} a^{8} + \frac{9}{37} a^{7} - \frac{7}{37} a^{6} - \frac{5}{37} a^{5} + \frac{4}{37} a^{4} - \frac{18}{37} a^{3} + \frac{18}{37} a^{2} - \frac{12}{37} a$, $\frac{1}{37} a^{17} + \frac{12}{37} a^{15} + \frac{4}{37} a^{14} - \frac{5}{37} a^{13} + \frac{4}{37} a^{12} - \frac{9}{37} a^{11} + \frac{16}{37} a^{10} + \frac{15}{37} a^{9} + \frac{4}{37} a^{8} + \frac{8}{37} a^{7} + \frac{8}{37} a^{6} + \frac{8}{37} a^{5} + \frac{1}{37} a^{4} - \frac{12}{37} a^{3} + \frac{18}{37} a^{2} + \frac{17}{37} a$, $\frac{1}{37} a^{18} - \frac{13}{37} a^{15} + \frac{15}{37} a^{14} + \frac{9}{37} a^{13} + \frac{18}{37} a^{12} - \frac{3}{37} a^{11} - \frac{18}{37} a^{10} + \frac{15}{37} a^{9} + \frac{7}{37} a^{8} + \frac{11}{37} a^{7} + \frac{18}{37} a^{6} - \frac{13}{37} a^{5} + \frac{14}{37} a^{4} + \frac{12}{37} a^{3} - \frac{14}{37} a^{2} - \frac{4}{37} a$, $\frac{1}{6623} a^{19} - \frac{67}{6623} a^{18} - \frac{22}{6623} a^{17} + \frac{69}{6623} a^{16} + \frac{2323}{6623} a^{15} - \frac{3120}{6623} a^{14} + \frac{903}{6623} a^{13} - \frac{279}{6623} a^{12} - \frac{1}{6623} a^{11} + \frac{2667}{6623} a^{10} + \frac{2340}{6623} a^{9} - \frac{459}{6623} a^{8} + \frac{435}{6623} a^{7} + \frac{3063}{6623} a^{6} - \frac{1810}{6623} a^{5} - \frac{3210}{6623} a^{4} + \frac{3113}{6623} a^{3} - \frac{1131}{6623} a^{2} + \frac{1241}{6623} a + \frac{25}{179}$, $\frac{1}{1347040840969097} a^{20} - \frac{47019940027}{1347040840969097} a^{19} + \frac{6175507262437}{1347040840969097} a^{18} - \frac{4939204332881}{1347040840969097} a^{17} - \frac{5524616660646}{1347040840969097} a^{16} - \frac{304509124608480}{1347040840969097} a^{15} + \frac{385765121712685}{1347040840969097} a^{14} - \frac{13874633745510}{36406509215381} a^{13} - \frac{416181452762108}{1347040840969097} a^{12} - \frac{623203886486345}{1347040840969097} a^{11} + \frac{26275425283012}{1347040840969097} a^{10} - \frac{392757813602394}{1347040840969097} a^{9} - \frac{414495262542772}{1347040840969097} a^{8} - \frac{331677529813}{3110948824409} a^{7} - \frac{569390113394577}{1347040840969097} a^{6} - \frac{572811759753226}{1347040840969097} a^{5} - \frac{16556202528082}{1347040840969097} a^{4} + \frac{5232897180586}{13337038029397} a^{3} - \frac{176688735160743}{1347040840969097} a^{2} - \frac{352198913104622}{1347040840969097} a + \frac{37332421934}{84079697957}$, $\frac{1}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{21} + \frac{39976470317438379166369529325464192553329007469177760962}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{20} - \frac{18339945106025534775126370187958785245977650311462923237739864295353}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{19} + \frac{3713028964230726283280898251510710678564570087134600532058064241999344}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{18} - \frac{4235384374555256649773047588824679266122994421395971808950152195555778}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{17} - \frac{2883901466628334546853679593569177944032901850229526481530530953876007}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{16} - \frac{172110079641869508420976645065617818515411476805323674707764945272755735}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{15} + \frac{28258429228794845903826206184866642249437854139102135729568574950810290}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{14} + \frac{13530008858511971107829859866576679878850923183848908627473011544707442}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{13} - \frac{107736702170676564626426639037844867599355920379620273704292393789518491}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{12} - \frac{23583937945922881385349227337124080234523481468745849669908113440319615}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{11} + \frac{152885035673082420744676724162510589020013165205931987950374770551669433}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{10} + \frac{41791659610443168981789548474856800434103989151312505241956003445467187}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{9} + \frac{77262385895881588719139705365313284811004752706972194242255027011525648}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{8} + \frac{109958880328987800067928763096295091122169851916106989847759819183047991}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{7} - \frac{66288710277796257653948157260494725807516263022395325094509770032852782}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{6} + \frac{62649445645562878426279846206678171029808501860563262954249066258079314}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{5} + \frac{47768993913867278731106860756963116048834048410073592798980970484985383}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{4} + \frac{106963489841270110736461155576033420664620193459844799318639769788278890}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{3} - \frac{36356380176272497323023083439646758526230153006008298660129403887524408}{427444632439259046265593692751404965520448772591636228076471526035520841} a^{2} - \frac{62544473956957089054607805550061731754818668769813882091045584728525403}{427444632439259046265593692751404965520448772591636228076471526035520841} a + \frac{6641953833679543462201797284950536520660481620919248066746230359147}{26680271670885652972073758988290678829064900604933289312556739656421}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{23}\times C_{517891}$, which has order $11911493$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 866679281.3791491 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-11}) \), 11.11.31181719929966183601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ R $22$ $22$ $22$ ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ $22$ $22$ ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
$89$89.11.10.1$x^{11} - 89$$11$$1$$10$$C_{11}$$[\ ]_{11}$
89.11.10.1$x^{11} - 89$$11$$1$$10$$C_{11}$$[\ ]_{11}$