Normalized defining polynomial
\( x^{22} - 11 x^{21} + 44 x^{20} - 33 x^{19} - 264 x^{18} + 495 x^{17} + 1331 x^{16} - 5698 x^{15} + 3619 x^{14} + 13915 x^{13} + 14498 x^{12} - 61939 x^{11} - 78386 x^{10} + 27313 x^{9} + 373593 x^{8} - 284306 x^{7} + 237369 x^{6} - 11385 x^{5} + 47520 x^{4} + 99 x^{3} + 4334 x^{2} - 913 x + 45 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-265223542853498303707290831275917574144=-\,2^{20}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{61454767620954569963998460374080173688640465174323620733093403523} a^{21} - \frac{26828495142163967224776274660494436802295296319087880101320946765}{61454767620954569963998460374080173688640465174323620733093403523} a^{20} - \frac{8141116069407380959133738028701237820672340286543991585710717727}{61454767620954569963998460374080173688640465174323620733093403523} a^{19} + \frac{18557522830484888259097523840338504236334608819472913813306975358}{61454767620954569963998460374080173688640465174323620733093403523} a^{18} - \frac{17715641863109256604183664428255352161287197104351857403293361205}{61454767620954569963998460374080173688640465174323620733093403523} a^{17} + \frac{22142554860698286199844944885345582462302522269241712623332050388}{61454767620954569963998460374080173688640465174323620733093403523} a^{16} - \frac{13495113900801863289248310168253029237652499875605922967921487191}{61454767620954569963998460374080173688640465174323620733093403523} a^{15} + \frac{26957422420586421220605337082216983701480455489749360814189939897}{61454767620954569963998460374080173688640465174323620733093403523} a^{14} + \frac{27801421540514943370466030750536198036468870893613998864677686151}{61454767620954569963998460374080173688640465174323620733093403523} a^{13} - \frac{15176183903613996858531857992360673593243266711862333669290494920}{61454767620954569963998460374080173688640465174323620733093403523} a^{12} + \frac{16959745858999355678048474998455184492872348555940301014663453352}{61454767620954569963998460374080173688640465174323620733093403523} a^{11} - \frac{11824969141359108384992380226580868716614096216217973966886455331}{61454767620954569963998460374080173688640465174323620733093403523} a^{10} + \frac{13520328733276757261561171382783395034770243997494435394360348665}{61454767620954569963998460374080173688640465174323620733093403523} a^{9} - \frac{18307423334580410127192865480111906965489274124997243466223925368}{61454767620954569963998460374080173688640465174323620733093403523} a^{8} + \frac{21033198194507986074041154464966843413805523168779072315641586594}{61454767620954569963998460374080173688640465174323620733093403523} a^{7} - \frac{2006435805433758434899734439201699683742486853286459164386292214}{61454767620954569963998460374080173688640465174323620733093403523} a^{6} - \frac{25472505824510971207852352778771782900679095379786143227223263090}{61454767620954569963998460374080173688640465174323620733093403523} a^{5} + \frac{29766746146586079967827931657609854590878790473548393882577863613}{61454767620954569963998460374080173688640465174323620733093403523} a^{4} + \frac{4717065032492216389345231015533983112681204569058140294702857330}{61454767620954569963998460374080173688640465174323620733093403523} a^{3} + \frac{10420170593699373039967146761818926061968514700432428024224785640}{61454767620954569963998460374080173688640465174323620733093403523} a^{2} + \frac{14081428084827835716921196259822788014721778098778989412443032389}{61454767620954569963998460374080173688640465174323620733093403523} a + \frac{12588351202653201477346459692850515670192400253465887370507042027}{61454767620954569963998460374080173688640465174323620733093403523}$
Class group and class number
$C_{22}$, which has order $22$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2013788572.23 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_{11}$ (as 22T6):
| A solvable group of order 220 |
| The 22 conjugacy class representatives for $C_2\times F_{11}$ |
| Character table for $C_2\times F_{11}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||