Properties

Label 22.0.26114419672...3824.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,2^{33}\cdot 3^{11}\cdot 23^{20}$
Root discriminant $84.73$
Ramified primes $2, 3, 23$
Class number $495926$ (GRH)
Class group $[495926]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6391493137, -1278298632, 5757368622, -1074775766, 2565595585, -445564762, 744424991, -119632870, 156123875, -23035280, 24869896, -3330816, 3078660, -368132, 297640, -30962, 22201, -1928, 1234, -82, 47, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 2*x^21 + 47*x^20 - 82*x^19 + 1234*x^18 - 1928*x^17 + 22201*x^16 - 30962*x^15 + 297640*x^14 - 368132*x^13 + 3078660*x^12 - 3330816*x^11 + 24869896*x^10 - 23035280*x^9 + 156123875*x^8 - 119632870*x^7 + 744424991*x^6 - 445564762*x^5 + 2565595585*x^4 - 1074775766*x^3 + 5757368622*x^2 - 1278298632*x + 6391493137)
 
gp: K = bnfinit(x^22 - 2*x^21 + 47*x^20 - 82*x^19 + 1234*x^18 - 1928*x^17 + 22201*x^16 - 30962*x^15 + 297640*x^14 - 368132*x^13 + 3078660*x^12 - 3330816*x^11 + 24869896*x^10 - 23035280*x^9 + 156123875*x^8 - 119632870*x^7 + 744424991*x^6 - 445564762*x^5 + 2565595585*x^4 - 1074775766*x^3 + 5757368622*x^2 - 1278298632*x + 6391493137, 1)
 

Normalized defining polynomial

\( x^{22} - 2 x^{21} + 47 x^{20} - 82 x^{19} + 1234 x^{18} - 1928 x^{17} + 22201 x^{16} - 30962 x^{15} + 297640 x^{14} - 368132 x^{13} + 3078660 x^{12} - 3330816 x^{11} + 24869896 x^{10} - 23035280 x^{9} + 156123875 x^{8} - 119632870 x^{7} + 744424991 x^{6} - 445564762 x^{5} + 2565595585 x^{4} - 1074775766 x^{3} + 5757368622 x^{2} - 1278298632 x + 6391493137 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2611441967281400084968119933496263205453824=-\,2^{33}\cdot 3^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $84.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(552=2^{3}\cdot 3\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{552}(1,·)$, $\chi_{552}(197,·)$, $\chi_{552}(193,·)$, $\chi_{552}(265,·)$, $\chi_{552}(269,·)$, $\chi_{552}(77,·)$, $\chi_{552}(533,·)$, $\chi_{552}(25,·)$, $\chi_{552}(409,·)$, $\chi_{552}(461,·)$, $\chi_{552}(361,·)$, $\chi_{552}(29,·)$, $\chi_{552}(485,·)$, $\chi_{552}(289,·)$, $\chi_{552}(101,·)$, $\chi_{552}(169,·)$, $\chi_{552}(173,·)$, $\chi_{552}(509,·)$, $\chi_{552}(49,·)$, $\chi_{552}(73,·)$, $\chi_{552}(121,·)$, $\chi_{552}(317,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{21} + \frac{5368482719810123978204546541866070538587862166740291192382636088228179293822982}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{20} - \frac{1273940848025776549986367000767747083627730917112142682469377765899147967953185}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{19} + \frac{4223564213305343908204329261684160104234651685558066594550250826976587223270768}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{18} + \frac{9504469766929994603866856009673948502872778345259818459906698206821975359975683}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{17} - \frac{8120968874425230365377489274251949572080401070466388850579170972926830315212483}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{16} - \frac{13098987681763158038975037759201587215387211397651740222386387434407995853576566}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{15} - \frac{6930095571634104153894722411123020181178232090780282058637002668806929165863616}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{14} - \frac{3796035123976950043803387642346261722820945219325134582310594479725731427775484}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{13} + \frac{13804981857043871707313552183160928942902920133710881174387906225437300947878642}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{12} + \frac{7936527747669074895243231711950910152830778715951880324126481665979278433666175}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{11} - \frac{7714647779915634432995959944878739940008197433959766277313053694226434942569246}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{10} + \frac{3789873698529516235073988189411747047568967194712465557596523186357398775500925}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{9} + \frac{6558731642089766829255003426749835037622557699627474462550531896459778187409125}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{8} - \frac{13287589391131311657760889778862978761895760374618110757620603705488697885864577}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{7} + \frac{3456075027872082745359870966589326120446753936682827895885652493326590116971728}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{6} - \frac{4638268530462187526164226576720915410439187368623107900072921766630399525378663}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{5} + \frac{6015195158110275864553453846688673101440598932807828117309027329891735655814990}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{4} + \frac{12838773864773513259446194842431843271187887823185437681003149517535073310255443}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{3} + \frac{9519504555567118813521111381137686435805339372672590059483210400431806031881776}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a^{2} + \frac{8238217722661693494387072336356077105184664257268525426830945446652463027626074}{30984097795921555015647072513886486852970884189157104437398008152367347156341497} a + \frac{12015826099734275700639321005424863541741700590013857044881385880189231807955526}{30984097795921555015647072513886486852970884189157104437398008152367347156341497}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{495926}$, which has order $495926$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.82438 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-6}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ $22$ $22$ $22$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ $22$ $22$ $22$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
23Data not computed