Normalized defining polynomial
\( x^{22} - 132 x^{20} + 6006 x^{18} - 3432 x^{17} - 8404 x^{16} + 99528 x^{15} - 3347223 x^{14} - 2157848 x^{13} + 19467756 x^{12} + 3593532 x^{11} + 417479403 x^{10} + 660477972 x^{9} + 1786415928 x^{8} + 5675962688 x^{7} + 12184182186 x^{6} + 97343192496 x^{5} + 245071592040 x^{4} + 417345567804 x^{3} + 819274473963 x^{2} + 824171054652 x + 301353699564 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-253554366603650015745082936335958480508679892151832674304=-\,2^{32}\cdot 3^{26}\cdot 11^{33}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $366.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{4}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{5}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{6}$, $\frac{1}{12} a^{13} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{36} a^{14} - \frac{1}{18} a^{11} - \frac{1}{9} a^{8} + \frac{1}{3} a^{6} + \frac{1}{18} a^{5} + \frac{1}{3} a^{3} + \frac{1}{12} a^{2}$, $\frac{1}{72} a^{15} - \frac{1}{24} a^{13} - \frac{1}{36} a^{12} - \frac{1}{18} a^{9} - \frac{1}{6} a^{7} - \frac{2}{9} a^{6} + \frac{1}{6} a^{4} + \frac{1}{24} a^{3} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{144} a^{16} - \frac{1}{144} a^{15} + \frac{1}{144} a^{14} + \frac{1}{144} a^{13} - \frac{5}{72} a^{12} + \frac{1}{36} a^{11} + \frac{1}{18} a^{10} - \frac{1}{18} a^{9} + \frac{1}{18} a^{8} + \frac{2}{9} a^{7} + \frac{1}{36} a^{6} + \frac{1}{18} a^{5} - \frac{7}{48} a^{4} - \frac{5}{48} a^{3} - \frac{11}{48} a^{2} + \frac{3}{16} a - \frac{3}{8}$, $\frac{1}{432} a^{17} - \frac{1}{432} a^{16} + \frac{1}{432} a^{15} + \frac{1}{432} a^{14} + \frac{7}{216} a^{13} + \frac{1}{108} a^{12} - \frac{1}{27} a^{11} - \frac{2}{27} a^{10} + \frac{1}{54} a^{9} + \frac{2}{27} a^{8} - \frac{5}{108} a^{7} - \frac{17}{54} a^{6} - \frac{47}{144} a^{5} + \frac{1}{48} a^{4} + \frac{37}{144} a^{3} - \frac{13}{48} a^{2} - \frac{11}{24} a$, $\frac{1}{864} a^{18} + \frac{1}{432} a^{15} + \frac{1}{288} a^{14} - \frac{1}{48} a^{13} - \frac{1}{72} a^{12} + \frac{1}{18} a^{11} - \frac{1}{36} a^{10} - \frac{1}{27} a^{9} + \frac{5}{72} a^{8} - \frac{1}{72} a^{7} - \frac{205}{864} a^{6} - \frac{19}{72} a^{5} - \frac{13}{36} a^{4} + \frac{59}{144} a^{3} + \frac{3}{32} a^{2} - \frac{17}{48} a + \frac{1}{4}$, $\frac{1}{2592} a^{19} - \frac{1}{648} a^{16} - \frac{1}{864} a^{15} + \frac{1}{144} a^{13} + \frac{11}{216} a^{12} + \frac{1}{54} a^{11} + \frac{2}{81} a^{10} - \frac{11}{216} a^{9} - \frac{13}{216} a^{8} - \frac{253}{2592} a^{7} + \frac{91}{216} a^{6} - \frac{19}{108} a^{5} - \frac{7}{27} a^{4} - \frac{17}{288} a^{3} - \frac{25}{72} a^{2} + \frac{19}{48} a - \frac{1}{8}$, $\frac{1}{5184} a^{20} - \frac{1}{1728} a^{18} - \frac{1}{1296} a^{17} + \frac{5}{1728} a^{16} + \frac{1}{432} a^{15} - \frac{5}{576} a^{14} + \frac{1}{54} a^{13} + \frac{11}{216} a^{12} + \frac{17}{648} a^{11} + \frac{7}{432} a^{10} - \frac{29}{432} a^{9} - \frac{1}{5184} a^{8} - \frac{1}{216} a^{7} - \frac{547}{1728} a^{6} - \frac{215}{432} a^{5} + \frac{31}{192} a^{4} + \frac{61}{144} a^{3} - \frac{1}{192} a^{2} + \frac{19}{48} a + \frac{1}{16}$, $\frac{1}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{21} + \frac{848316229916132983007150976594264724769286870183436698382921328436811035349525164799949698767299423065691}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{20} + \frac{3049256646690828829634421027945358575382212417690693674962534380270530896209081427777391034297244904723509}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{19} + \frac{2011228029857062098936866209313468184629676568727484237270125208734342669271728615415963470947911829179935}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{18} - \frac{13188625524888366559331738818412686033978259697300276117515736108740233734937353668311318592728861685032133}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{17} - \frac{44879086342952062144132788793469454151049476516974413646412064020723511300042652210382066979081179928421151}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{16} + \frac{2466376929445439410332274849652750634458515453689778309874813139277476835435992600799401286614273223280957}{5324286119095145346319895219051147965227483461758694297368370380899433244736723881158539871639504227424399488} a^{15} - \frac{57232896373212615982305864080583599433498972900679543613049809628716326522285325307528411333718805005159249}{5324286119095145346319895219051147965227483461758694297368370380899433244736723881158539871639504227424399488} a^{14} + \frac{27626087080712116871042404869217848376934040557242959891948178257709189762772009500183614818090321907377965}{665535764886893168289986902381393495653435432719836787171046297612429155592090485144817483954938028428049936} a^{13} + \frac{17663610228073548037958599881079209531164064355296312442488008125366160333970478167295428674691168377039239}{249575911832584938108745088393022560870038287269938795189142361604660933347033931929306556483101760660518726} a^{12} - \frac{105123723231777067377219592968439480362471553826555944718377254264421189209477296424726939751903314335238205}{3993214589321359009739921414288360973920612596319020723026277785674574933552542910868904903729628170568299616} a^{11} + \frac{8344882774771323821879146171132723201703353232864006561958750464577215935510812004701713911890803465499523}{249575911832584938108745088393022560870038287269938795189142361604660933347033931929306556483101760660518726} a^{10} + \frac{295369639079487935247714082224238981748568680582857154639560437472082405261830810743364073892499209383887787}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{9} + \frac{3430112414825256086125133009685893731009157065581377538213303192780405221465316577613331394428247752098838397}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{8} - \frac{753716558174283249237112405920562494980717647168176022847896315005370370153730406955089114941046596886912153}{15972858357285436038959685657153443895682450385276082892105111142698299734210171643475619614918512682273198464} a^{7} + \frac{1999650184049978447637212980365560954725066888944314328962437422028367924718567694751548635898512130481730343}{5324286119095145346319895219051147965227483461758694297368370380899433244736723881158539871639504227424399488} a^{6} + \frac{693949993119380957269304606499199610054111961451852297874519591700343937303674318886972226615031133168522329}{1774762039698381782106631739683715988409161153919564765789456793633144414912241293719513290546501409141466496} a^{5} + \frac{1756692726063331558881358463553832343884914602681970566607165351906996321637705321400146918323643700267877193}{5324286119095145346319895219051147965227483461758694297368370380899433244736723881158539871639504227424399488} a^{4} + \frac{243924887388625303071683998797396130122607631642490265317785711085095704422293433783418242490741723996613705}{1774762039698381782106631739683715988409161153919564765789456793633144414912241293719513290546501409141466496} a^{3} + \frac{78305323641249153085376380774586287614785217924058439909729488869059549638349697869013739198256671625719223}{1774762039698381782106631739683715988409161153919564765789456793633144414912241293719513290546501409141466496} a^{2} - \frac{10892782713393703821292397763046712288772613195219910240119322429963088539003883169246318103960817894368737}{36974209160382953793888161243410749758524190706657599287280349867357175310671693619156526886385446023780552} a + \frac{14387855369380761208713865906079056785682533089883562179088030115591692885470951737595436716423287902253927}{49298945547177271725184214991214333011365587608876799049707133156476233747562258158875369181847261365040736}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1688335612100000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 871200 |
| The 44 conjugacy class representatives for t22n40 |
| Character table for t22n40 is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | $22$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.5 | $x^{4} + 2 x^{2} - 4$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.8.16.17 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 20$ | $4$ | $2$ | $16$ | $C_2^2:C_4$ | $[2, 2, 3]^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.6.9.2 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 11 | Data not computed | ||||||