Normalized defining polynomial
\( x^{22} + 44 x^{20} + 630 x^{18} + 8460 x^{16} + 76305 x^{14} + 643608 x^{12} + 3617232 x^{10} + 19958520 x^{8} + 82688640 x^{6} + 387467520 x^{4} + 1977939216 x^{2} + 3692749824 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24794911296000000000000000000000000000000000000=-\,2^{42}\cdot 3^{18}\cdot 5^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{10} - \frac{1}{4} a^{6} + \frac{1}{5}$, $\frac{1}{40} a^{11} - \frac{1}{40} a^{10} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{40} a^{13} - \frac{1}{40} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{7}{20} a^{3} - \frac{1}{2} a + \frac{2}{5}$, $\frac{1}{400} a^{14} - \frac{1}{80} a^{13} + \frac{3}{400} a^{12} - \frac{1}{80} a^{11} + \frac{1}{400} a^{10} + \frac{1}{16} a^{9} - \frac{7}{80} a^{8} - \frac{3}{16} a^{7} + \frac{1}{40} a^{6} - \frac{11}{25} a^{4} - \frac{3}{10} a^{3} + \frac{33}{100} a^{2} + \frac{9}{20} a + \frac{4}{25}$, $\frac{1}{400} a^{15} - \frac{1}{200} a^{13} - \frac{1}{100} a^{11} - \frac{1}{40} a^{9} + \frac{7}{80} a^{7} + \frac{3}{50} a^{5} - \frac{1}{2} a^{4} + \frac{7}{25} a^{3} - \frac{1}{2} a^{2} - \frac{39}{100} a$, $\frac{1}{800} a^{16} + \frac{1}{400} a^{12} + \frac{3}{200} a^{10} - \frac{7}{160} a^{8} - \frac{1}{4} a^{7} + \frac{9}{50} a^{6} - \frac{1}{20} a^{4} + \frac{1}{4} a^{3} - \frac{73}{200} a^{2} - \frac{6}{25}$, $\frac{1}{800} a^{17} + \frac{1}{400} a^{13} - \frac{1}{100} a^{11} - \frac{1}{40} a^{10} - \frac{7}{160} a^{9} - \frac{39}{200} a^{7} - \frac{1}{8} a^{6} + \frac{1}{5} a^{5} + \frac{1}{4} a^{4} + \frac{77}{200} a^{3} - \frac{17}{50} a + \frac{2}{5}$, $\frac{1}{24000} a^{18} - \frac{1}{6000} a^{16} - \frac{1}{800} a^{15} + \frac{1}{4000} a^{14} - \frac{1}{100} a^{13} - \frac{11}{1000} a^{12} - \frac{3}{400} a^{11} - \frac{173}{8000} a^{10} - \frac{1}{20} a^{9} + \frac{31}{1000} a^{8} - \frac{37}{160} a^{7} + \frac{1}{1000} a^{6} - \frac{31}{200} a^{5} - \frac{103}{2000} a^{4} - \frac{19}{100} a^{3} - \frac{217}{500} a^{2} + \frac{29}{200} a - \frac{33}{125}$, $\frac{1}{48000} a^{19} - \frac{1}{12000} a^{17} - \frac{1}{1600} a^{16} - \frac{9}{8000} a^{15} - \frac{3}{1000} a^{13} + \frac{9}{800} a^{12} - \frac{93}{16000} a^{11} + \frac{1}{200} a^{10} + \frac{7}{250} a^{9} - \frac{13}{320} a^{8} + \frac{827}{4000} a^{7} - \frac{61}{400} a^{6} - \frac{223}{4000} a^{5} + \frac{1}{40} a^{4} - \frac{107}{1000} a^{3} + \frac{193}{400} a^{2} - \frac{437}{1000} a - \frac{2}{25}$, $\frac{1}{2703942075844712985373870422480000} a^{20} - \frac{729037857009694107685404331}{270394207584471298537387042248000} a^{18} - \frac{1}{1600} a^{17} + \frac{15136334367731642517054705953}{30043800842719033170820782472000} a^{16} - \frac{1}{800} a^{15} + \frac{211955948805587810902569931}{15021900421359516585410391236000} a^{14} - \frac{9}{800} a^{13} + \frac{934416358920993560503944572399}{180262805056314199024924694832000} a^{12} + \frac{1}{100} a^{11} - \frac{2913755073086542639352364015849}{150219004213595165854103912360000} a^{10} - \frac{9}{320} a^{9} - \frac{2516267349807652206621731074289}{45065701264078549756231173708000} a^{8} - \frac{157}{800} a^{7} + \frac{4831467804608456731049688582833}{45065701264078549756231173708000} a^{6} + \frac{3}{25} a^{5} - \frac{8433570604094552063444771036779}{22532850632039274878115586854000} a^{4} + \frac{97}{400} a^{3} - \frac{3166489888130757694529464824719}{11266425316019637439057793427000} a^{2} + \frac{23}{200} a - \frac{918571934260618377611269628522}{2347171940837424466470373630625}$, $\frac{1}{1711595334009703319741659977429840000} a^{21} - \frac{1252031285792199143950785879059}{342319066801940663948331995485968000} a^{19} + \frac{1494793525871644026179978242699}{19017725933441147997129555304776000} a^{17} - \frac{1}{1600} a^{16} + \frac{1085756217340836248917705906663}{19017725933441147997129555304776000} a^{15} - \frac{109214613116892888676126008379061}{22821271120129377596555466365731200} a^{13} + \frac{9}{800} a^{12} - \frac{11779938188136793725673595558963}{190177259334411479971295553047760000} a^{11} + \frac{1}{200} a^{10} + \frac{2639663264912485680726333867838897}{28526588900161721995694332957164000} a^{9} - \frac{13}{320} a^{8} - \frac{2126573406330618593264781787523881}{28526588900161721995694332957164000} a^{7} - \frac{61}{400} a^{6} - \frac{1759411345560998367913641278047367}{28526588900161721995694332957164000} a^{5} - \frac{19}{40} a^{4} - \frac{35073524260658964300884672339387}{178291180626010762473089580982275} a^{3} - \frac{7}{400} a^{2} + \frac{27822824383091372684725573324797}{990506559033393124850497672123750} a - \frac{2}{25}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13913504688600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | $22$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.8.20.63 | $x^{8} + 4 x^{5} + 4 x^{2} + 10$ | $8$ | $1$ | $20$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |