Normalized defining polynomial
\( x^{22} - x^{21} + 225 x^{20} - 230 x^{19} + 19126 x^{18} - 28841 x^{17} + 812810 x^{16} - 1847925 x^{15} + 20490513 x^{14} - 63602020 x^{13} + 333560957 x^{12} - 1208195986 x^{11} + 3941677367 x^{10} - 12395573094 x^{9} + 35724961604 x^{8} - 72371663593 x^{7} + 199796166276 x^{6} - 333264099002 x^{5} + 549328483842 x^{4} - 675845066158 x^{3} + 728343357757 x^{2} - 383812617252 x + 364599064657 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24689351133194187911921679520154637032130685006493179=-\,11^{11}\cdot 89^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(979=11\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{979}(978,·)$, $\chi_{979}(1,·)$, $\chi_{979}(67,·)$, $\chi_{979}(901,·)$, $\chi_{979}(769,·)$, $\chi_{979}(648,·)$, $\chi_{979}(331,·)$, $\chi_{979}(716,·)$, $\chi_{979}(78,·)$, $\chi_{979}(912,·)$, $\chi_{979}(210,·)$, $\chi_{979}(340,·)$, $\chi_{979}(406,·)$, $\chi_{979}(87,·)$, $\chi_{979}(934,·)$, $\chi_{979}(615,·)$, $\chi_{979}(263,·)$, $\chi_{979}(364,·)$, $\chi_{979}(45,·)$, $\chi_{979}(892,·)$, $\chi_{979}(573,·)$, $\chi_{979}(639,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{21} + \frac{435181412632840434463223211280951836151755003082777437586383504523418189807250927341571846493114702973580398841221451214601788171428800}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{20} - \frac{38183455914123103019948088473091418026272512071589437325622885460903385682741807155018545841604804790640061010338065337393574591607531}{83541433582583439081693412041284794531986585613274068030439474135478434875241303072002050971856239931909311684282909025856161613848323} a^{19} - \frac{291538590377950483995195873347120286665918435724375239578121658919344363274830814922183929238253412510825222621612192357436528771536432}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{18} + \frac{1336932460822908292261438524417807098025773165990155230111479808790428270540168556547272934192074626536781773720672277372796142731293779}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{17} + \frac{1255597000442757593727620546080292792397779242631603583609371161488362445132955433758985227164686784989942596391588284597268428728121586}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{16} + \frac{846944064383434771023615288988828560379833028983856869809187061328466234884268962459166717208214690335440210142508483308039604990371036}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{15} - \frac{233220047735191012544849749760312237786875085380393874533029375946158282682910664241875037168608316533054292755166165862044832337625440}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{14} + \frac{1321719561205352353568080867502964783203553725450567220534671914849731008480005756961686212141923407670509603048986951831563123743468498}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{13} - \frac{416704702445180947924011478102176309497745099692618261667905131446006293223109432018324136656799971986960928311749603683181404874482508}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{12} - \frac{859261124912010784308810360401542017798898479883608848032009066642276943841196293861881486144516939641056612139640485336458640036958923}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{11} - \frac{781659299589663412170050309686297957732073595237860034290758030305051614272323173149994480654742990082409398240118178970821597710813774}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{10} + \frac{806133360622394209607005969216139355582101293637200151380699103285139409060536805162761560295904290541166172522408680525904179663927714}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{9} - \frac{1231535268836186322140189952423112580950488994630775193341710283896906566331780734424789027483926291420301104845270478967961385354496299}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{8} + \frac{19695151307094783559758096578769875304825713272793981887428773076024614902631264419805144268487795273126487110308066723473223884163436}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{7} + \frac{1214369711478003163378921601805773572686206831991058257925006345128421620462221788304978496809836200554891593852620479265258156699311330}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{6} - \frac{1209975476639883372018450840043763042744858385330464431774731482015354086035747965173715463859264288147596780382772460448160746201407502}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{5} - \frac{1298913045763765784056212346604470453067987282020772962048216045084572741173335548858938543801245589186161474816502753404303503987716622}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{4} - \frac{164270691682155598884486960592905613590978240057137901481294032187909149800557699824905686572215105087759572949128412056520957862620394}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{3} - \frac{455010113279915886873738460710601967530505030169762964496353855353006034119188267712188431445247923226681009058538770446434954324128431}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a^{2} - \frac{1008419851710360741107189971951086282152149541632810091512673904009391339190896563680584000028776677379624085664531216019693085024287622}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951} a + \frac{1274818166258691114835942030863253084208471301431242513866093403230396551545540092053048994036864262401732722798841941130704675841122799}{3091033042555587246022656245527537397683503667691140517126260543012702090383928213664075885958680877480644532318467633956677979712387951}$
Class group and class number
$C_{82867144}$, which has order $82867144$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866679281.3791491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-979}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 89 | Data not computed | ||||||