Normalized defining polynomial
\( x^{22} + 110 x^{20} - 22 x^{19} + 4895 x^{18} + 4026 x^{17} + 120120 x^{16} + 288222 x^{15} + 1882144 x^{14} + 6515520 x^{13} + 24762320 x^{12} + 60773360 x^{11} + 227012456 x^{10} + 397249116 x^{9} + 720148935 x^{8} + 1566072057 x^{7} + 1566926449 x^{6} + 1217292384 x^{5} + 714471362 x^{4} - 2592915589 x^{3} + 2027899907 x^{2} - 2522739483 x + 6490917711 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-243091704711882553644913533390559631408320849609375=-\,5^{11}\cdot 11^{41}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $195.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(605=5\cdot 11^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{605}(384,·)$, $\chi_{605}(1,·)$, $\chi_{605}(386,·)$, $\chi_{605}(329,·)$, $\chi_{605}(331,·)$, $\chi_{605}(274,·)$, $\chi_{605}(276,·)$, $\chi_{605}(219,·)$, $\chi_{605}(604,·)$, $\chi_{605}(221,·)$, $\chi_{605}(164,·)$, $\chi_{605}(549,·)$, $\chi_{605}(166,·)$, $\chi_{605}(551,·)$, $\chi_{605}(109,·)$, $\chi_{605}(494,·)$, $\chi_{605}(111,·)$, $\chi_{605}(496,·)$, $\chi_{605}(54,·)$, $\chi_{605}(439,·)$, $\chi_{605}(56,·)$, $\chi_{605}(441,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{8}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{2}{9} a^{8} + \frac{2}{9} a^{7} + \frac{2}{9} a^{6} + \frac{2}{9} a^{5} + \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{2421} a^{19} + \frac{115}{2421} a^{18} - \frac{25}{807} a^{17} + \frac{20}{269} a^{16} + \frac{7}{807} a^{15} + \frac{16}{807} a^{14} - \frac{40}{269} a^{13} + \frac{61}{807} a^{12} - \frac{59}{2421} a^{11} - \frac{188}{2421} a^{10} - \frac{116}{807} a^{9} - \frac{17}{269} a^{8} + \frac{281}{807} a^{7} + \frac{248}{807} a^{6} + \frac{24}{269} a^{5} - \frac{280}{807} a^{4} + \frac{1192}{2421} a^{3} + \frac{1171}{2421} a^{2} + \frac{80}{269} a - \frac{110}{269}$, $\frac{1}{7263} a^{20} + \frac{1}{7263} a^{19} - \frac{4}{7263} a^{18} - \frac{49}{2421} a^{17} - \frac{12}{269} a^{16} - \frac{244}{2421} a^{15} + \frac{208}{2421} a^{14} + \frac{22}{2421} a^{13} - \frac{746}{7263} a^{12} - \frac{725}{7263} a^{11} - \frac{436}{7263} a^{10} - \frac{8}{2421} a^{9} + \frac{328}{807} a^{8} + \frac{763}{2421} a^{7} + \frac{314}{2421} a^{6} - \frac{418}{2421} a^{5} - \frac{3116}{7263} a^{4} + \frac{3280}{7263} a^{3} - \frac{964}{7263} a^{2} - \frac{353}{807} a - \frac{103}{807}$, $\frac{1}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{21} - \frac{23853275434339143959185311943502647424334213143971309249202568752546518990281571607020879495782197002}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{20} - \frac{72511905930013775971959469895509721479774669135627636864246693732603030071267065363631860870651513938}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{19} + \frac{108521781359597836995235475691643488800177429438990861819299225943579516206624697846726059901367653517101}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{18} + \frac{10762121056715846124495921759267289572889923099550883421387859448035266799477274853150813388072630919960}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{17} + \frac{54457786921048836861935465198978460178607548333751984396632477903748976444045324687336494197644856025360}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{16} - \frac{25784129540961535969183537991688202251649670415167166618711915746487197510257622438501807549968777761170}{261091104168550536920127547626577338667239889747019367340479397234070500149579187241053459453772660423469} a^{15} - \frac{102131259580977548645208252590340462957660810024111843422778223083433595134496747003213133517320629305021}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{14} + \frac{118517275222573912870835814128854237625445045275922275467228945415445151908158351410719448026288351279376}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{13} - \frac{263858554046874414360789804463882146070340670813738069681189877338232164307647773816026155792620218531567}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{12} - \frac{2194279604168322190161447533748299606801940856021613768428663522708077610379565351534697227755154297955}{261091104168550536920127547626577338667239889747019367340479397234070500149579187241053459453772660423469} a^{11} + \frac{336061598974676060011822062686637857337100233588118986405826108895112989020244066251977216843037639500332}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{10} - \frac{73437364613226374163942260218232297212230574179621010625284445641581585620603974759139826032352081740675}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{9} - \frac{77447767525771981160452064528278240491951586622957672976612734870558123294136984388891028779993577248040}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{8} + \frac{36200865459671094810967580202220888567077345123444642714988320145515361149733502109807981560748169172797}{261091104168550536920127547626577338667239889747019367340479397234070500149579187241053459453772660423469} a^{7} + \frac{288420271458316157508807470103624868038598334802686631757619360427092985080706488689290417474072041035819}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{6} + \frac{398279534639378831534006562688977455884639840597045796652042384079595329204152052451904100094632045302556}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{5} + \frac{1167926181376373787461238295025615194586107192481788592903320605133525068354949692064285186706190329968235}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{4} - \frac{325844655076500040934325834486118804686480291651169663936431310635182352823450189367067212205614513953721}{783273312505651610760382642879732016001719669241058102021438191702211500448737561723160378361317981270407} a^{3} + \frac{603444991053604073974366938636630012488870175830518252606932526968780487687101710680116461421173609497523}{2349819937516954832281147928639196048005159007723174306064314575106634501346212685169481135083953943811221} a^{2} - \frac{45196509709327167731473524378244327885602751108507044627989126892687636769353200032254863179330467689875}{261091104168550536920127547626577338667239889747019367340479397234070500149579187241053459453772660423469} a - \frac{115621545496787037347890992696789175963002233440110044180264324219678680431156975178288909114481288523994}{261091104168550536920127547626577338667239889747019367340479397234070500149579187241053459453772660423469}$
Class group and class number
$C_{88708}$, which has order $88708$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 285114946276.13544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-55}) \), 11.11.672749994932560009201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{11}$ | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||