Normalized defining polynomial
\( x^{22} - 5 x^{21} + 29 x^{20} - 88 x^{19} + 339 x^{18} - 873 x^{17} + 2485 x^{16} - 4849 x^{15} + 10031 x^{14} - 14957 x^{13} + 25292 x^{12} - 30651 x^{11} + 43592 x^{10} - 40589 x^{9} + 48954 x^{8} - 34229 x^{7} + 36905 x^{6} - 15206 x^{5} + 13618 x^{4} - 596 x^{3} + 3281 x^{2} - 280 x + 25 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2386346823270991037094903689868490203=-\,3^{11}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{10} - \frac{1}{5} a^{4} + \frac{1}{5} a$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} - \frac{1}{5} a^{5} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{12} - \frac{1}{5} a^{6} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{10} - \frac{1}{5} a^{7} - \frac{1}{5} a^{4} + \frac{2}{5} a$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{11} - \frac{1}{5} a^{8} - \frac{1}{5} a^{5} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{12} - \frac{1}{5} a^{9} - \frac{1}{5} a^{6} + \frac{2}{5} a^{3}$, $\frac{1}{935} a^{19} + \frac{29}{935} a^{18} + \frac{63}{935} a^{17} - \frac{1}{55} a^{16} + \frac{52}{935} a^{15} - \frac{1}{17} a^{14} + \frac{3}{935} a^{13} - \frac{7}{187} a^{12} + \frac{23}{935} a^{11} - \frac{362}{935} a^{10} + \frac{316}{935} a^{9} - \frac{118}{935} a^{8} - \frac{249}{935} a^{7} - \frac{31}{935} a^{6} - \frac{8}{85} a^{5} + \frac{367}{935} a^{4} - \frac{87}{187} a^{3} - \frac{2}{55} a^{2} + \frac{48}{935} a + \frac{89}{187}$, $\frac{1}{4675} a^{20} - \frac{2}{4675} a^{19} - \frac{8}{425} a^{18} - \frac{4}{187} a^{17} + \frac{392}{4675} a^{16} + \frac{203}{4675} a^{15} + \frac{212}{4675} a^{14} + \frac{59}{4675} a^{13} - \frac{1884}{4675} a^{12} + \frac{47}{4675} a^{11} - \frac{243}{4675} a^{10} - \frac{377}{4675} a^{9} - \frac{1266}{4675} a^{8} - \frac{59}{187} a^{7} - \frac{349}{935} a^{6} + \frac{851}{4675} a^{5} + \frac{2213}{4675} a^{4} + \frac{1857}{4675} a^{3} + \frac{1476}{4675} a^{2} - \frac{59}{935} a + \frac{84}{187}$, $\frac{1}{1819722378663801071209556125} a^{21} + \frac{160672920736930163962289}{1819722378663801071209556125} a^{20} - \frac{7499390421944799331971}{363944475732760214241911225} a^{19} - \frac{1310373645927181719967533}{1819722378663801071209556125} a^{18} - \frac{34540793566345111557178588}{1819722378663801071209556125} a^{17} - \frac{20232360207060071191148904}{363944475732760214241911225} a^{16} - \frac{14176681904650951257419394}{363944475732760214241911225} a^{15} + \frac{497190494702989171424838}{107042492862576533600562125} a^{14} - \frac{34762450624411799866334}{363944475732760214241911225} a^{13} + \frac{730476811614231263372121838}{1819722378663801071209556125} a^{12} + \frac{482991754454111296537889764}{1819722378663801071209556125} a^{11} + \frac{63121085526245497610262203}{363944475732760214241911225} a^{10} - \frac{578994594716180288321972073}{1819722378663801071209556125} a^{9} - \frac{186715195908235696334389326}{1819722378663801071209556125} a^{8} + \frac{67165003976231876628146847}{363944475732760214241911225} a^{7} - \frac{154299571916040190464973614}{1819722378663801071209556125} a^{6} + \frac{333200464636035792187615339}{1819722378663801071209556125} a^{5} + \frac{26237392382728701557408117}{363944475732760214241911225} a^{4} + \frac{336670420015558802155549933}{1819722378663801071209556125} a^{3} - \frac{820030982206104611758496594}{1819722378663801071209556125} a^{2} + \frac{139713028909252760061435909}{363944475732760214241911225} a - \frac{26272970376276790794366984}{72788895146552042848382245}$
Class group and class number
$C_{241}$, which has order $241$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7004872444344238152046092}{1819722378663801071209556125} a^{21} - \frac{35130899307781461457817487}{1819722378663801071209556125} a^{20} + \frac{40697189694742968622684318}{363944475732760214241911225} a^{19} - \frac{618325726204162391625420311}{1819722378663801071209556125} a^{18} + \frac{2377385256158690286327597104}{1819722378663801071209556125} a^{17} - \frac{1225601164841445508027352953}{363944475732760214241911225} a^{16} + \frac{3483396496987894308658676647}{363944475732760214241911225} a^{15} - \frac{33991957112644517675932919393}{1819722378663801071209556125} a^{14} + \frac{14026237292808905187805933182}{363944475732760214241911225} a^{13} - \frac{104407834024688978531651890879}{1819722378663801071209556125} a^{12} + \frac{175940411164104349787113827713}{1819722378663801071209556125} a^{11} - \frac{42540857679337508781734482254}{363944475732760214241911225} a^{10} + \frac{301367191924638670728596486309}{1819722378663801071209556125} a^{9} - \frac{278928109627158738501653246242}{1819722378663801071209556125} a^{8} + \frac{66904587258420909130020216509}{363944475732760214241911225} a^{7} - \frac{13570750582047481422639900614}{107042492862576533600562125} a^{6} + \frac{14603265555652412141029994289}{107042492862576533600562125} a^{5} - \frac{19519844901127034084393241411}{363944475732760214241911225} a^{4} + \frac{87119000524502414050300205636}{1819722378663801071209556125} a^{3} + \frac{2400348133101033807471255302}{1819722378663801071209556125} a^{2} + \frac{4088637920954072386657573868}{363944475732760214241911225} a + \frac{3059208602713343113056007}{72788895146552042848382245} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15484188.8463 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 44 |
| The 14 conjugacy class representatives for $D_{22}$ |
| Character table for $D_{22}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 1297 | Data not computed | ||||||