Normalized defining polynomial
\( x^{22} - 2 x^{21} + x^{20} - 10 x^{19} + 18 x^{18} + 2 x^{17} + 31 x^{16} - 76 x^{15} - 19 x^{14} - 8 x^{13} + 188 x^{12} - 50 x^{11} - 76 x^{10} - 135 x^{9} + 130 x^{8} + 29 x^{7} + 42 x^{6} - 76 x^{5} + 11 x^{4} - 8 x^{3} + 13 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22378993818717495955548767565627=-\,3^{11}\cdot 1831^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1831$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{12}{47} a^{19} + \frac{20}{47} a^{18} - \frac{14}{47} a^{17} - \frac{9}{47} a^{16} - \frac{12}{47} a^{15} - \frac{18}{47} a^{14} + \frac{3}{47} a^{13} - \frac{21}{47} a^{12} + \frac{3}{47} a^{11} + \frac{22}{47} a^{10} - \frac{1}{47} a^{9} + \frac{16}{47} a^{8} + \frac{3}{47} a^{7} - \frac{3}{47} a^{6} + \frac{10}{47} a^{5} + \frac{18}{47} a^{4} + \frac{2}{47} a^{3} - \frac{11}{47} a^{2} + \frac{10}{47} a + \frac{6}{47}$, $\frac{1}{905347652423} a^{21} - \frac{7009733765}{905347652423} a^{20} + \frac{216902865881}{905347652423} a^{19} + \frac{323405858872}{905347652423} a^{18} - \frac{323917225339}{905347652423} a^{17} + \frac{326039210861}{905347652423} a^{16} + \frac{15018399967}{905347652423} a^{15} + \frac{17789972227}{905347652423} a^{14} + \frac{630236487}{19262716009} a^{13} + \frac{356081718892}{905347652423} a^{12} - \frac{3437311634}{905347652423} a^{11} + \frac{1040380920}{905347652423} a^{10} - \frac{1931527219}{905347652423} a^{9} - \frac{263981466300}{905347652423} a^{8} - \frac{307455059123}{905347652423} a^{7} - \frac{234668290038}{905347652423} a^{6} + \frac{211410128850}{905347652423} a^{5} + \frac{426201096855}{905347652423} a^{4} - \frac{358627373030}{905347652423} a^{3} - \frac{200039368210}{905347652423} a^{2} + \frac{409680040182}{905347652423} a - \frac{408132685713}{905347652423}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{97902606020}{19262716009} a^{21} + \frac{121939211642}{19262716009} a^{20} - \frac{2182733406}{19262716009} a^{19} + \frac{966115408764}{19262716009} a^{18} - \frac{1023202462684}{19262716009} a^{17} - \frac{1005193668792}{19262716009} a^{16} - \frac{3692933865756}{19262716009} a^{15} + \frac{4608727529250}{19262716009} a^{14} + \frac{5411124004959}{19262716009} a^{13} + \frac{4493432812008}{19262716009} a^{12} - \frac{14850732943836}{19262716009} a^{11} - \frac{6149360661028}{19262716009} a^{10} + \frac{3440070117822}{19262716009} a^{9} + \frac{14980019208668}{19262716009} a^{8} - \frac{1702852996267}{19262716009} a^{7} - \frac{4087306024608}{19262716009} a^{6} - \frac{6382768745344}{19262716009} a^{5} + \frac{2342264256385}{19262716009} a^{4} + \frac{608678372872}{19262716009} a^{3} + \frac{1026929785830}{19262716009} a^{2} - \frac{350206773122}{19262716009} a + \frac{132316820371}{19262716009} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19742415.8494 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 16 conjugacy class representatives for t22n13 |
| Character table for t22n13 |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.3.11239665258721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | $22$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 1831 | Data not computed | ||||||