Normalized defining polynomial
\( x^{22} - 2 x^{21} + 3 x^{20} + 8 x^{19} - 22 x^{18} + 38 x^{17} - 4 x^{16} - 57 x^{15} + 146 x^{14} - 127 x^{13} + 42 x^{12} + 144 x^{11} - 154 x^{10} + 123 x^{9} - 19 x^{8} - 35 x^{7} + 41 x^{6} - 58 x^{5} + 35 x^{4} - 12 x^{3} + 7 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22378993818717495955548767565627=-\,3^{11}\cdot 1831^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1831$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{839} a^{20} + \frac{405}{839} a^{19} + \frac{28}{839} a^{18} - \frac{69}{839} a^{17} + \frac{241}{839} a^{16} + \frac{46}{839} a^{15} + \frac{149}{839} a^{14} + \frac{122}{839} a^{13} + \frac{300}{839} a^{12} + \frac{133}{839} a^{11} - \frac{253}{839} a^{10} + \frac{354}{839} a^{9} - \frac{76}{839} a^{8} - \frac{124}{839} a^{7} - \frac{18}{839} a^{6} + \frac{268}{839} a^{5} - \frac{77}{839} a^{4} - \frac{279}{839} a^{3} + \frac{242}{839} a^{2} + \frac{75}{839} a - \frac{149}{839}$, $\frac{1}{153896253801989} a^{21} + \frac{87588763607}{153896253801989} a^{20} - \frac{22359869945973}{153896253801989} a^{19} + \frac{64017950780500}{153896253801989} a^{18} - \frac{36953227625811}{153896253801989} a^{17} - \frac{6393148815941}{153896253801989} a^{16} + \frac{11874943969860}{153896253801989} a^{15} + \frac{21685095672904}{153896253801989} a^{14} + \frac{36289666758452}{153896253801989} a^{13} + \frac{24144986477432}{153896253801989} a^{12} + \frac{73342327158105}{153896253801989} a^{11} - \frac{75641298112498}{153896253801989} a^{10} - \frac{5883372201045}{153896253801989} a^{9} + \frac{49229852293319}{153896253801989} a^{8} - \frac{53198585229236}{153896253801989} a^{7} + \frac{71443090465014}{153896253801989} a^{6} - \frac{344837388735}{153896253801989} a^{5} - \frac{12979624546535}{153896253801989} a^{4} - \frac{23173787888631}{153896253801989} a^{3} + \frac{41036472978270}{153896253801989} a^{2} - \frac{55934009147780}{153896253801989} a - \frac{19731794366184}{153896253801989}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{73270484821}{183428192851} a^{21} + \frac{116409601624}{183428192851} a^{20} - \frac{155178102378}{183428192851} a^{19} - \frac{687197029618}{183428192851} a^{18} + \frac{1386977019282}{183428192851} a^{17} - \frac{2092756379177}{183428192851} a^{16} - \frac{965838247500}{183428192851} a^{15} + \frac{4497579191569}{183428192851} a^{14} - \frac{9074565932759}{183428192851} a^{13} + \frac{4635042678194}{183428192851} a^{12} + \frac{1493279417118}{183428192851} a^{11} - \frac{12677564258950}{183428192851} a^{10} + \frac{7256695913259}{183428192851} a^{9} - \frac{3739012450007}{183428192851} a^{8} - \frac{3466050760805}{183428192851} a^{7} + \frac{3827066469121}{183428192851} a^{6} - \frac{2152777956344}{183428192851} a^{5} + \frac{2351369891221}{183428192851} a^{4} - \frac{542678460350}{183428192851} a^{3} - \frac{459221216873}{183428192851} a^{2} - \frac{73767514697}{183428192851} a + \frac{57360729737}{183428192851} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19742415.8494 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 16 conjugacy class representatives for t22n13 |
| Character table for t22n13 |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.3.11239665258721.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | $22$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 1831 | Data not computed | ||||||