Normalized defining polynomial
\( x^{22} - x^{21} + 2 x^{20} + 40 x^{19} - 33 x^{18} + 59 x^{17} + 535 x^{16} - 361 x^{15} + 574 x^{14} + 2902 x^{13} - 1439 x^{12} + 2088 x^{11} + 6412 x^{10} - 3927 x^{9} + 3984 x^{8} + 2341 x^{7} - 9804 x^{6} + 3508 x^{5} + 355 x^{4} - 5700 x^{3} + 5006 x^{2} + 186 x + 1073 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-222623423334106740048017938136372833267=-\,67^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{67}(64,·)$, $\chi_{67}(1,·)$, $\chi_{67}(66,·)$, $\chi_{67}(3,·)$, $\chi_{67}(5,·)$, $\chi_{67}(8,·)$, $\chi_{67}(9,·)$, $\chi_{67}(14,·)$, $\chi_{67}(15,·)$, $\chi_{67}(22,·)$, $\chi_{67}(24,·)$, $\chi_{67}(25,·)$, $\chi_{67}(27,·)$, $\chi_{67}(40,·)$, $\chi_{67}(42,·)$, $\chi_{67}(43,·)$, $\chi_{67}(45,·)$, $\chi_{67}(52,·)$, $\chi_{67}(53,·)$, $\chi_{67}(58,·)$, $\chi_{67}(59,·)$, $\chi_{67}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1073} a^{18} - \frac{14}{37} a^{17} - \frac{465}{1073} a^{16} + \frac{477}{1073} a^{15} + \frac{196}{1073} a^{14} - \frac{280}{1073} a^{13} - \frac{188}{1073} a^{12} - \frac{528}{1073} a^{11} + \frac{425}{1073} a^{10} + \frac{474}{1073} a^{9} + \frac{502}{1073} a^{8} + \frac{353}{1073} a^{7} - \frac{350}{1073} a^{6} - \frac{395}{1073} a^{5} + \frac{249}{1073} a^{4} + \frac{368}{1073} a^{3} + \frac{38}{1073} a^{2} + \frac{486}{1073} a$, $\frac{1}{1073} a^{19} - \frac{59}{1073} a^{17} + \frac{535}{1073} a^{16} - \frac{355}{1073} a^{15} - \frac{106}{1073} a^{14} - \frac{130}{1073} a^{13} + \frac{400}{1073} a^{12} - \frac{416}{1073} a^{11} + \frac{271}{1073} a^{10} - \frac{194}{1073} a^{9} + \frac{295}{1073} a^{8} + \frac{7}{29} a^{7} + \frac{214}{1073} a^{6} - \frac{244}{1073} a^{5} - \frac{473}{1073} a^{4} + \frac{299}{1073} a^{3} - \frac{181}{1073} a^{2} - \frac{4}{37} a$, $\frac{1}{1073} a^{20} + \frac{187}{1073} a^{17} + \frac{108}{1073} a^{16} + \frac{139}{1073} a^{15} - \frac{369}{1073} a^{14} - \frac{25}{1073} a^{13} + \frac{295}{1073} a^{12} + \frac{236}{1073} a^{11} + \frac{202}{1073} a^{10} + \frac{363}{1073} a^{9} - \frac{167}{1073} a^{8} - \frac{419}{1073} a^{7} - \frac{507}{1073} a^{6} - \frac{172}{1073} a^{5} - \frac{32}{1073} a^{4} + \frac{71}{1073} a^{3} - \frac{20}{1073} a^{2} - \frac{297}{1073} a$, $\frac{1}{282771446873143714790792225903047859} a^{21} - \frac{80533925868161970347019868387923}{282771446873143714790792225903047859} a^{20} - \frac{108023571629777619740718754586496}{282771446873143714790792225903047859} a^{19} + \frac{9024487331613800224898374625641}{282771446873143714790792225903047859} a^{18} + \frac{96052929383576115643125796395817107}{282771446873143714790792225903047859} a^{17} - \frac{70610044419220153651486542330462973}{282771446873143714790792225903047859} a^{16} - \frac{3273993997551090006709119055215263}{9750739547349783268648007789760271} a^{15} - \frac{98140927367370056505612999054810984}{282771446873143714790792225903047859} a^{14} - \frac{77762174972640680855014117005796415}{282771446873143714790792225903047859} a^{13} + \frac{133374860605491324843912348058095340}{282771446873143714790792225903047859} a^{12} + \frac{110722828079559091821076483743084594}{282771446873143714790792225903047859} a^{11} + \frac{101962984887965974444557322237424846}{282771446873143714790792225903047859} a^{10} - \frac{114145440394414143728449542589412032}{282771446873143714790792225903047859} a^{9} + \frac{17821229717532495917128033947726748}{282771446873143714790792225903047859} a^{8} - \frac{104803394079789110578831221204396886}{282771446873143714790792225903047859} a^{7} + \frac{2468144755135984650025708124980396}{7642471537111992291643033132514807} a^{6} - \frac{58870122401254469811799967581410399}{282771446873143714790792225903047859} a^{5} - \frac{21717101864859015627335270523510246}{282771446873143714790792225903047859} a^{4} + \frac{122040143707678877883237000268351754}{282771446873143714790792225903047859} a^{3} + \frac{120779925026331798613304262170420057}{282771446873143714790792225903047859} a^{2} + \frac{13375085356343952548539477525668814}{282771446873143714790792225903047859} a - \frac{36498034963818680776094827587832}{263533501279723872125621832155683}$
Class group and class number
$C_{67}$, which has order $67$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338444542.043 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 67 | Data not computed | ||||||