Normalized defining polynomial
\( x^{22} - 33 x^{20} + 495 x^{18} - 4356 x^{16} + 24552 x^{14} - 91179 x^{12} - 81 x^{11} + 222156 x^{10} + 594 x^{9} - 343035 x^{8} + 3564 x^{7} + 313632 x^{6} - 31185 x^{5} - 147015 x^{4} + 53460 x^{3} + 29403 x^{2} - 18711 x + 3159 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22085756220567549162579756126980406366726963=-\,3^{21}\cdot 11^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{9} a^{9}$, $\frac{1}{9} a^{10}$, $\frac{1}{9} a^{11}$, $\frac{1}{9} a^{12}$, $\frac{1}{9} a^{13}$, $\frac{1}{27} a^{14}$, $\frac{1}{27} a^{15}$, $\frac{1}{27} a^{16}$, $\frac{1}{27} a^{17}$, $\frac{1}{81} a^{18}$, $\frac{1}{81} a^{19}$, $\frac{1}{81} a^{20}$, $\frac{1}{156451963351005060464493} a^{21} + \frac{168052396502361954646}{52150654450335020154831} a^{20} + \frac{21460319100705919028}{17383551483445006718277} a^{19} - \frac{901173334592346071969}{156451963351005060464493} a^{18} + \frac{28944416186079124534}{1931505720382778524253} a^{17} - \frac{471153292212590915944}{52150654450335020154831} a^{16} - \frac{789592978438162538050}{52150654450335020154831} a^{15} + \frac{307364714005453827155}{17383551483445006718277} a^{14} - \frac{252069800821512008017}{17383551483445006718277} a^{13} + \frac{646868872593982736377}{17383551483445006718277} a^{12} - \frac{86274914943003834242}{5794517161148335572759} a^{11} + \frac{83643656470652328624}{1931505720382778524253} a^{10} + \frac{580425510413436350594}{17383551483445006718277} a^{9} + \frac{457936260956091980413}{5794517161148335572759} a^{8} - \frac{594647944519182296018}{5794517161148335572759} a^{7} + \frac{609631561065522611723}{5794517161148335572759} a^{6} - \frac{155747212009204773685}{5794517161148335572759} a^{5} + \frac{538793892321863763344}{1931505720382778524253} a^{4} - \frac{496352484826650965382}{1931505720382778524253} a^{3} - \frac{595689762486098368059}{1931505720382778524253} a^{2} + \frac{823253418188365075591}{1931505720382778524253} a + \frac{488985030338658626953}{1931505720382778524253}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{90984746206135690205}{156451963351005060464493} a^{21} - \frac{43951915608327660791}{156451963351005060464493} a^{20} - \frac{987210760935218223118}{52150654450335020154831} a^{19} + \frac{464169520173848216167}{52150654450335020154831} a^{18} + \frac{14575402557152001555287}{52150654450335020154831} a^{17} - \frac{6638934446893561365410}{52150654450335020154831} a^{16} - \frac{41922222885949034730244}{17383551483445006718277} a^{15} + \frac{6112165022214725543036}{5794517161148335572759} a^{14} + \frac{230362895549622040663106}{17383551483445006718277} a^{13} - \frac{31797541355715811399306}{5794517161148335572759} a^{12} - \frac{826631974996098426653189}{17383551483445006718277} a^{11} + \frac{35041454194892104895441}{1931505720382778524253} a^{10} + \frac{213268430563113148223737}{1931505720382778524253} a^{9} - \frac{213963942865101724978870}{5794517161148335572759} a^{8} - \frac{306727206888702323079070}{1931505720382778524253} a^{7} + \frac{86519951876596013136515}{1931505720382778524253} a^{6} + \frac{248708063814910177221920}{1931505720382778524253} a^{5} - \frac{72155603263624402456715}{1931505720382778524253} a^{4} - \frac{83786054891972123382362}{1931505720382778524253} a^{3} + \frac{40362501073728799595553}{1931505720382778524253} a^{2} + \frac{6139844254675023638889}{1931505720382778524253} a - \frac{2458820957519800985333}{1931505720382778524253} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25313714393700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1210 |
| The 25 conjugacy class representatives for t22n11 |
| Character table for t22n11 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||