Properties

Label 22.0.20375776275...3619.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,19^{11}\cdot 211^{10}$
Root discriminant $49.64$
Ramified primes $19, 211$
Class number $23$ (GRH)
Class group $[23]$ (GRH)
Galois group $D_{22}$ (as 22T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![323, -4313, 27307, -109065, 309476, -667142, 1141091, -1595475, 1862690, -1843981, 1565057, -1147506, 730608, -404718, 195276, -81730, 29609, -9153, 2404, -515, 90, -11, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 11*x^21 + 90*x^20 - 515*x^19 + 2404*x^18 - 9153*x^17 + 29609*x^16 - 81730*x^15 + 195276*x^14 - 404718*x^13 + 730608*x^12 - 1147506*x^11 + 1565057*x^10 - 1843981*x^9 + 1862690*x^8 - 1595475*x^7 + 1141091*x^6 - 667142*x^5 + 309476*x^4 - 109065*x^3 + 27307*x^2 - 4313*x + 323)
 
gp: K = bnfinit(x^22 - 11*x^21 + 90*x^20 - 515*x^19 + 2404*x^18 - 9153*x^17 + 29609*x^16 - 81730*x^15 + 195276*x^14 - 404718*x^13 + 730608*x^12 - 1147506*x^11 + 1565057*x^10 - 1843981*x^9 + 1862690*x^8 - 1595475*x^7 + 1141091*x^6 - 667142*x^5 + 309476*x^4 - 109065*x^3 + 27307*x^2 - 4313*x + 323, 1)
 

Normalized defining polynomial

\( x^{22} - 11 x^{21} + 90 x^{20} - 515 x^{19} + 2404 x^{18} - 9153 x^{17} + 29609 x^{16} - 81730 x^{15} + 195276 x^{14} - 404718 x^{13} + 730608 x^{12} - 1147506 x^{11} + 1565057 x^{10} - 1843981 x^{9} + 1862690 x^{8} - 1595475 x^{7} + 1141091 x^{6} - 667142 x^{5} + 309476 x^{4} - 109065 x^{3} + 27307 x^{2} - 4313 x + 323 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-20375776275370821024303050129100543619=-\,19^{11}\cdot 211^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.64$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 211$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{4}{13} a^{17} + \frac{2}{13} a^{16} + \frac{6}{13} a^{15} - \frac{3}{13} a^{14} - \frac{5}{13} a^{13} - \frac{3}{13} a^{12} + \frac{5}{13} a^{11} + \frac{3}{13} a^{10} + \frac{2}{13} a^{9} - \frac{1}{13} a^{8} - \frac{5}{13} a^{7} - \frac{5}{13} a^{6} + \frac{1}{13} a^{5} - \frac{1}{13} a^{4} - \frac{3}{13} a^{3} + \frac{2}{13} a^{2} - \frac{4}{13}$, $\frac{1}{13} a^{19} - \frac{1}{13} a^{17} - \frac{2}{13} a^{16} - \frac{1}{13} a^{15} - \frac{6}{13} a^{14} + \frac{4}{13} a^{13} + \frac{4}{13} a^{12} - \frac{4}{13} a^{11} + \frac{3}{13} a^{10} + \frac{4}{13} a^{9} - \frac{1}{13} a^{8} + \frac{2}{13} a^{7} - \frac{5}{13} a^{6} - \frac{5}{13} a^{5} + \frac{1}{13} a^{4} + \frac{1}{13} a^{3} + \frac{5}{13} a^{2} - \frac{4}{13} a + \frac{3}{13}$, $\frac{1}{8076887} a^{20} - \frac{10}{8076887} a^{19} - \frac{12228}{351169} a^{18} + \frac{2531481}{8076887} a^{17} + \frac{3278487}{8076887} a^{16} - \frac{2840554}{8076887} a^{15} - \frac{1522233}{8076887} a^{14} + \frac{2742228}{8076887} a^{13} + \frac{3337462}{8076887} a^{12} - \frac{2045200}{8076887} a^{11} + \frac{681015}{8076887} a^{10} - \frac{3607920}{8076887} a^{9} - \frac{32253}{621299} a^{8} - \frac{3450623}{8076887} a^{7} - \frac{1629643}{8076887} a^{6} - \frac{455875}{1153841} a^{5} - \frac{2758699}{8076887} a^{4} - \frac{46906}{8076887} a^{3} + \frac{3416279}{8076887} a^{2} - \frac{324342}{1153841} a + \frac{17677}{36547}$, $\frac{1}{2802679789} a^{21} + \frac{163}{2802679789} a^{20} + \frac{1889922}{215590753} a^{19} - \frac{66626598}{2802679789} a^{18} - \frac{171463894}{400382827} a^{17} + \frac{27276714}{400382827} a^{16} + \frac{56147757}{400382827} a^{15} - \frac{1277049245}{2802679789} a^{14} - \frac{717636370}{2802679789} a^{13} + \frac{6458485}{23551931} a^{12} + \frac{236474166}{2802679789} a^{11} + \frac{272638920}{2802679789} a^{10} + \frac{60717226}{121855643} a^{9} + \frac{28532081}{164863517} a^{8} - \frac{187908783}{2802679789} a^{7} - \frac{323018603}{2802679789} a^{6} + \frac{87220566}{215590753} a^{5} + \frac{593817643}{2802679789} a^{4} - \frac{944102547}{2802679789} a^{3} + \frac{62254386}{215590753} a^{2} - \frac{504433159}{2802679789} a - \frac{42731006}{164863517}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{23}$, which has order $23$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 294726306.155 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_{22}$ (as 22T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 44
The 14 conjugacy class representatives for $D_{22}$
Character table for $D_{22}$

Intermediate fields

\(\Q(\sqrt{-19}) \), 11.11.1035571956771279049.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 22 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$19$19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
211Data not computed