Normalized defining polynomial
\( x^{22} - 11 x^{21} + 90 x^{20} - 515 x^{19} + 2404 x^{18} - 9153 x^{17} + 29609 x^{16} - 81730 x^{15} + 195276 x^{14} - 404718 x^{13} + 730608 x^{12} - 1147506 x^{11} + 1565057 x^{10} - 1843981 x^{9} + 1862690 x^{8} - 1595475 x^{7} + 1141091 x^{6} - 667142 x^{5} + 309476 x^{4} - 109065 x^{3} + 27307 x^{2} - 4313 x + 323 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20375776275370821024303050129100543619=-\,19^{11}\cdot 211^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{4}{13} a^{17} + \frac{2}{13} a^{16} + \frac{6}{13} a^{15} - \frac{3}{13} a^{14} - \frac{5}{13} a^{13} - \frac{3}{13} a^{12} + \frac{5}{13} a^{11} + \frac{3}{13} a^{10} + \frac{2}{13} a^{9} - \frac{1}{13} a^{8} - \frac{5}{13} a^{7} - \frac{5}{13} a^{6} + \frac{1}{13} a^{5} - \frac{1}{13} a^{4} - \frac{3}{13} a^{3} + \frac{2}{13} a^{2} - \frac{4}{13}$, $\frac{1}{13} a^{19} - \frac{1}{13} a^{17} - \frac{2}{13} a^{16} - \frac{1}{13} a^{15} - \frac{6}{13} a^{14} + \frac{4}{13} a^{13} + \frac{4}{13} a^{12} - \frac{4}{13} a^{11} + \frac{3}{13} a^{10} + \frac{4}{13} a^{9} - \frac{1}{13} a^{8} + \frac{2}{13} a^{7} - \frac{5}{13} a^{6} - \frac{5}{13} a^{5} + \frac{1}{13} a^{4} + \frac{1}{13} a^{3} + \frac{5}{13} a^{2} - \frac{4}{13} a + \frac{3}{13}$, $\frac{1}{8076887} a^{20} - \frac{10}{8076887} a^{19} - \frac{12228}{351169} a^{18} + \frac{2531481}{8076887} a^{17} + \frac{3278487}{8076887} a^{16} - \frac{2840554}{8076887} a^{15} - \frac{1522233}{8076887} a^{14} + \frac{2742228}{8076887} a^{13} + \frac{3337462}{8076887} a^{12} - \frac{2045200}{8076887} a^{11} + \frac{681015}{8076887} a^{10} - \frac{3607920}{8076887} a^{9} - \frac{32253}{621299} a^{8} - \frac{3450623}{8076887} a^{7} - \frac{1629643}{8076887} a^{6} - \frac{455875}{1153841} a^{5} - \frac{2758699}{8076887} a^{4} - \frac{46906}{8076887} a^{3} + \frac{3416279}{8076887} a^{2} - \frac{324342}{1153841} a + \frac{17677}{36547}$, $\frac{1}{2802679789} a^{21} + \frac{163}{2802679789} a^{20} + \frac{1889922}{215590753} a^{19} - \frac{66626598}{2802679789} a^{18} - \frac{171463894}{400382827} a^{17} + \frac{27276714}{400382827} a^{16} + \frac{56147757}{400382827} a^{15} - \frac{1277049245}{2802679789} a^{14} - \frac{717636370}{2802679789} a^{13} + \frac{6458485}{23551931} a^{12} + \frac{236474166}{2802679789} a^{11} + \frac{272638920}{2802679789} a^{10} + \frac{60717226}{121855643} a^{9} + \frac{28532081}{164863517} a^{8} - \frac{187908783}{2802679789} a^{7} - \frac{323018603}{2802679789} a^{6} + \frac{87220566}{215590753} a^{5} + \frac{593817643}{2802679789} a^{4} - \frac{944102547}{2802679789} a^{3} + \frac{62254386}{215590753} a^{2} - \frac{504433159}{2802679789} a - \frac{42731006}{164863517}$
Class group and class number
$C_{23}$, which has order $23$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 294726306.155 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 44 |
| The 14 conjugacy class representatives for $D_{22}$ |
| Character table for $D_{22}$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 11.11.1035571956771279049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 211 | Data not computed | ||||||