Properties

Label 22.0.19991543710...7019.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,19^{11}\cdot 23^{20}$
Root discriminant $75.39$
Ramified primes $19, 23$
Class number $408991$ (GRH)
Class group $[408991]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1019110541, -758821285, 1285528692, -832219241, 793158991, -448933295, 313286973, -156007735, 87678393, -38558891, 18221714, -7075946, 2866861, -977548, 341082, -100740, 30023, -7462, 1845, -363, 70, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 + 70*x^20 - 363*x^19 + 1845*x^18 - 7462*x^17 + 30023*x^16 - 100740*x^15 + 341082*x^14 - 977548*x^13 + 2866861*x^12 - 7075946*x^11 + 18221714*x^10 - 38558891*x^9 + 87678393*x^8 - 156007735*x^7 + 313286973*x^6 - 448933295*x^5 + 793158991*x^4 - 832219241*x^3 + 1285528692*x^2 - 758821285*x + 1019110541)
 
gp: K = bnfinit(x^22 - 9*x^21 + 70*x^20 - 363*x^19 + 1845*x^18 - 7462*x^17 + 30023*x^16 - 100740*x^15 + 341082*x^14 - 977548*x^13 + 2866861*x^12 - 7075946*x^11 + 18221714*x^10 - 38558891*x^9 + 87678393*x^8 - 156007735*x^7 + 313286973*x^6 - 448933295*x^5 + 793158991*x^4 - 832219241*x^3 + 1285528692*x^2 - 758821285*x + 1019110541, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} + 70 x^{20} - 363 x^{19} + 1845 x^{18} - 7462 x^{17} + 30023 x^{16} - 100740 x^{15} + 341082 x^{14} - 977548 x^{13} + 2866861 x^{12} - 7075946 x^{11} + 18221714 x^{10} - 38558891 x^{9} + 87678393 x^{8} - 156007735 x^{7} + 313286973 x^{6} - 448933295 x^{5} + 793158991 x^{4} - 832219241 x^{3} + 1285528692 x^{2} - 758821285 x + 1019110541 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-199915437101854222076001836684210081547019=-\,19^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $75.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(437=19\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{437}(1,·)$, $\chi_{437}(324,·)$, $\chi_{437}(265,·)$, $\chi_{437}(75,·)$, $\chi_{437}(77,·)$, $\chi_{437}(400,·)$, $\chi_{437}(18,·)$, $\chi_{437}(151,·)$, $\chi_{437}(284,·)$, $\chi_{437}(94,·)$, $\chi_{437}(96,·)$, $\chi_{437}(417,·)$, $\chi_{437}(39,·)$, $\chi_{437}(170,·)$, $\chi_{437}(208,·)$, $\chi_{437}(210,·)$, $\chi_{437}(303,·)$, $\chi_{437}(305,·)$, $\chi_{437}(246,·)$, $\chi_{437}(248,·)$, $\chi_{437}(58,·)$, $\chi_{437}(381,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{6533} a^{20} - \frac{120}{6533} a^{19} - \frac{226}{6533} a^{18} - \frac{739}{6533} a^{17} - \frac{882}{6533} a^{16} + \frac{382}{6533} a^{15} + \frac{2345}{6533} a^{14} - \frac{2764}{6533} a^{13} - \frac{1630}{6533} a^{12} - \frac{1581}{6533} a^{11} - \frac{547}{6533} a^{10} + \frac{1874}{6533} a^{9} + \frac{2551}{6533} a^{8} - \frac{1853}{6533} a^{7} - \frac{2828}{6533} a^{6} + \frac{631}{6533} a^{5} - \frac{674}{6533} a^{4} - \frac{2984}{6533} a^{3} - \frac{3113}{6533} a^{2} + \frac{741}{6533} a + \frac{17}{139}$, $\frac{1}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{21} - \frac{2482297610145391536519785704328511083682885488752285307524297296839}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{20} - \frac{544032616710879941248288916931376089083879760955149934118183946537931}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{19} + \frac{31612886375228399331495422297011135503501693893589201911160444695969483}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{18} - \frac{1051087400189911282901017296399270040026931169234266448216983179105666}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{17} - \frac{11945239358277619683425561928802836283853195886674796115156425273737021}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{16} + \frac{15107036619482693960615692524699647556793135940831222677316784877388725}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{15} - \frac{13720773607941173669122963881476344713350833805668191700975976061412166}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{14} + \frac{17252790569935225463658182845670829542609910410231505524737323333374303}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{13} - \frac{32546558419727105302006395830202857814096685447813263968129368113103561}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{12} - \frac{18216245670559972486531794440810709041214304951839170171079247279314395}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{11} - \frac{6963695204902350228974747430090059401830870025155042396213974319483487}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{10} - \frac{5496477259658420934246509669609604340269243136106592235463429216143951}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{9} - \frac{8913451945078285897409710940379678862897493184371847089137802427775509}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{8} + \frac{14356359317540486873924536892930871504283282986827966909147769844186340}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{7} - \frac{32760307148282238147610655109611676403396408948664528537044354419282951}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{6} - \frac{29512417579792767553366387155915160786238937278930014990396260361758697}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{5} - \frac{33485949815520673272138601356142722274037335751067303941850177547214358}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{4} + \frac{13207649232893515163670616471786953277209567502134513274675286720026494}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{3} - \frac{35615136423549660614628612304605286241554137570756293958769766974798650}{78014444873648371129857004141805757431165320095252192103160561737761739} a^{2} - \frac{9190451067686745809323351434545107714401073048963591190840787416242266}{78014444873648371129857004141805757431165320095252192103160561737761739} a - \frac{146548323671027574533993321890191351425847847603108507878931951081702}{1659881805822305768720361790251186328322666385005365789428948122080037}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{408991}$, which has order $408991$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.82438 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-19}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ $22$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ R R $22$ $22$ $22$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$