Normalized defining polynomial
\( x^{22} - x^{21} + 24 x^{20} - 24 x^{19} + 254 x^{18} - 254 x^{17} + 1565 x^{16} - 1565 x^{15} + 6257 x^{14} - 6257 x^{13} + 17205 x^{12} - 17205 x^{11} + 33949 x^{10} - 33949 x^{9} + 50394 x^{8} - 50394 x^{7} + 60261 x^{6} - 60261 x^{5} + 63550 x^{4} - 63550 x^{3} + 64056 x^{2} - 64056 x + 64079 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1927323443393334271838358868310546875=-\,5^{11}\cdot 23^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(115=5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{115}(1,·)$, $\chi_{115}(6,·)$, $\chi_{115}(71,·)$, $\chi_{115}(74,·)$, $\chi_{115}(14,·)$, $\chi_{115}(79,·)$, $\chi_{115}(16,·)$, $\chi_{115}(81,·)$, $\chi_{115}(19,·)$, $\chi_{115}(84,·)$, $\chi_{115}(89,·)$, $\chi_{115}(26,·)$, $\chi_{115}(31,·)$, $\chi_{115}(96,·)$, $\chi_{115}(34,·)$, $\chi_{115}(99,·)$, $\chi_{115}(36,·)$, $\chi_{115}(101,·)$, $\chi_{115}(41,·)$, $\chi_{115}(44,·)$, $\chi_{115}(109,·)$, $\chi_{115}(114,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{28657} a^{12} + \frac{10946}{28657} a^{11} + \frac{12}{28657} a^{10} + \frac{5778}{28657} a^{9} + \frac{54}{28657} a^{8} - \frac{5545}{28657} a^{7} + \frac{112}{28657} a^{6} + \frac{11789}{28657} a^{5} + \frac{105}{28657} a^{4} + \frac{233}{28657} a^{3} + \frac{36}{28657} a^{2} + \frac{5778}{28657} a + \frac{2}{28657}$, $\frac{1}{28657} a^{13} + \frac{13}{28657} a^{11} - \frac{10946}{28657} a^{10} + \frac{65}{28657} a^{9} + \frac{5168}{28657} a^{8} + \frac{156}{28657} a^{7} - \frac{10569}{28657} a^{6} + \frac{182}{28657} a^{5} - \frac{2817}{28657} a^{4} + \frac{91}{28657} a^{3} + \frac{12920}{28657} a^{2} + \frac{13}{28657} a + \frac{6765}{28657}$, $\frac{1}{28657} a^{14} - \frac{9959}{28657} a^{11} - \frac{91}{28657} a^{10} - \frac{12632}{28657} a^{9} - \frac{546}{28657} a^{8} + \frac{4202}{28657} a^{7} - \frac{1274}{28657} a^{6} - \frac{12789}{28657} a^{5} - \frac{1274}{28657} a^{4} + \frac{9891}{28657} a^{3} - \frac{455}{28657} a^{2} - \frac{11035}{28657} a - \frac{26}{28657}$, $\frac{1}{28657} a^{15} - \frac{105}{28657} a^{11} - \frac{7752}{28657} a^{10} - \frac{700}{28657} a^{9} - \frac{2495}{28657} a^{8} - \frac{1890}{28657} a^{7} + \frac{13653}{28657} a^{6} - \frac{2352}{28657} a^{5} - \frac{4723}{28657} a^{4} - \frac{1225}{28657} a^{3} + \frac{3605}{28657} a^{2} - \frac{180}{28657} a - \frac{8739}{28657}$, $\frac{1}{28657} a^{16} - \frac{4702}{28657} a^{11} + \frac{560}{28657} a^{10} + \frac{2398}{28657} a^{9} + \frac{3780}{28657} a^{8} + \frac{4568}{28657} a^{7} + \frac{9408}{28657} a^{6} + \frac{871}{28657} a^{5} + \frac{9800}{28657} a^{4} - \frac{587}{28657} a^{3} + \frac{3600}{28657} a^{2} - \frac{3846}{28657} a + \frac{210}{28657}$, $\frac{1}{28657} a^{17} + \frac{680}{28657} a^{11} + \frac{1508}{28657} a^{10} + \frac{5100}{28657} a^{9} + \frac{563}{28657} a^{8} - \frac{13969}{28657} a^{7} + \frac{11669}{28657} a^{6} - \frac{9617}{28657} a^{5} + \frac{5954}{28657} a^{4} + \frac{10200}{28657} a^{3} - \frac{6516}{28657} a^{2} + \frac{1530}{28657} a + \frac{9404}{28657}$, $\frac{1}{28657} a^{18} + \frac{9048}{28657} a^{11} - \frac{3060}{28657} a^{10} - \frac{2468}{28657} a^{9} + \frac{6625}{28657} a^{8} - \frac{455}{28657} a^{7} + \frac{194}{28657} a^{6} + \frac{13394}{28657} a^{5} - \frac{3886}{28657} a^{4} + \frac{6986}{28657} a^{3} + \frac{5707}{28657} a^{2} + \frac{6373}{28657} a - \frac{1360}{28657}$, $\frac{1}{28657} a^{19} - \frac{3876}{28657} a^{11} + \frac{3584}{28657} a^{10} - \frac{2351}{28657} a^{9} - \frac{1878}{28657} a^{8} - \frac{7053}{28657} a^{7} + \frac{3013}{28657} a^{6} - \frac{9404}{28657} a^{5} + \frac{2627}{28657} a^{4} - \frac{10516}{28657} a^{3} - \frac{4128}{28657} a^{2} - \frac{10336}{28657} a + \frac{10561}{28657}$, $\frac{1}{28657} a^{20} - \frac{10737}{28657} a^{11} - \frac{13153}{28657} a^{10} + \frac{12533}{28657} a^{9} + \frac{1652}{28657} a^{8} + \frac{3343}{28657} a^{7} - \frac{5147}{28657} a^{6} - \frac{11124}{28657} a^{5} - \frac{4734}{28657} a^{4} + \frac{10613}{28657} a^{3} - \frac{14085}{28657} a^{2} - \frac{3685}{28657} a + \frac{7752}{28657}$, $\frac{1}{28657} a^{21} - \frac{8308}{28657} a^{11} - \frac{1908}{28657} a^{10} - \frac{2367}{28657} a^{9} + \frac{10001}{28657} a^{8} + \frac{7434}{28657} a^{7} - \frac{12174}{28657} a^{6} - \frac{4210}{28657} a^{5} - \frac{8282}{28657} a^{4} - \frac{5523}{28657} a^{3} + \frac{10306}{28657} a^{2} + \frac{3733}{28657} a - \frac{7183}{28657}$
Class group and class number
$C_{662}$, which has order $662$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1038656.82438 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-115}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||