Normalized defining polynomial
\( x^{22} - 11 x^{21} + 66 x^{20} - 275 x^{19} + 847 x^{18} - 1980 x^{17} + 3454 x^{16} - 4070 x^{15} + 1100 x^{14} + 9482 x^{13} - 30690 x^{12} + 60224 x^{11} - 77803 x^{10} + 49665 x^{9} + 48642 x^{8} - 188375 x^{7} + 271315 x^{6} - 233860 x^{5} + 132748 x^{4} - 52624 x^{3} + 14960 x^{2} - 2816 x + 256 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-191943424957750480504146841291811=-\,11^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} + \frac{1}{16} a^{11} + \frac{1}{16} a^{10} + \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{1}{16} a^{7} - \frac{3}{16} a^{6} + \frac{3}{16} a^{5} + \frac{3}{16} a^{4} + \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} + \frac{1}{16} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{3}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{32} a^{17} + \frac{1}{16} a^{11} - \frac{3}{32} a^{5}$, $\frac{1}{2176} a^{18} - \frac{9}{2176} a^{17} + \frac{1}{136} a^{16} - \frac{15}{544} a^{15} - \frac{7}{544} a^{14} + \frac{7}{272} a^{13} - \frac{43}{1088} a^{12} - \frac{43}{1088} a^{11} - \frac{27}{272} a^{10} - \frac{1}{8} a^{9} + \frac{27}{544} a^{8} - \frac{27}{272} a^{7} + \frac{293}{2176} a^{6} + \frac{399}{2176} a^{5} + \frac{67}{272} a^{4} + \frac{15}{32} a^{3} - \frac{7}{68} a^{2} + \frac{59}{136} a + \frac{15}{34}$, $\frac{1}{2176} a^{19} + \frac{3}{2176} a^{17} + \frac{1}{136} a^{16} - \frac{3}{272} a^{15} - \frac{15}{544} a^{14} + \frac{5}{1088} a^{13} + \frac{23}{544} a^{12} - \frac{87}{1088} a^{11} + \frac{29}{272} a^{10} - \frac{7}{544} a^{9} - \frac{49}{544} a^{8} + \frac{389}{2176} a^{7} + \frac{113}{544} a^{6} + \frac{523}{2176} a^{5} - \frac{43}{272} a^{4} - \frac{243}{544} a^{3} + \frac{9}{68} a^{2} + \frac{47}{136} a - \frac{1}{34}$, $\frac{1}{8742993761152} a^{20} - \frac{5}{4371496880576} a^{19} + \frac{1804607407}{8742993761152} a^{18} - \frac{8120733189}{4371496880576} a^{17} + \frac{27641910395}{2185748440288} a^{16} + \frac{7508970177}{2185748440288} a^{15} + \frac{12895353741}{4371496880576} a^{14} - \frac{1283166235}{136609277518} a^{13} - \frac{154397649059}{4371496880576} a^{12} - \frac{122458005907}{2185748440288} a^{11} - \frac{200850141955}{2185748440288} a^{10} - \frac{111402170293}{2185748440288} a^{9} + \frac{345409205765}{8742993761152} a^{8} + \frac{1017937710869}{4371496880576} a^{7} - \frac{1605350467689}{8742993761152} a^{6} - \frac{600150347253}{4371496880576} a^{5} - \frac{2922338095}{136609277518} a^{4} - \frac{77662894039}{546437110072} a^{3} + \frac{50441702895}{136609277518} a^{2} + \frac{18860479097}{273218555036} a - \frac{188576621}{68304638759}$, $\frac{1}{3086276797686656} a^{21} + \frac{83}{1543138398843328} a^{20} + \frac{91305501181}{1543138398843328} a^{19} - \frac{707128464423}{3086276797686656} a^{18} - \frac{2026730266811}{220448342691904} a^{17} + \frac{2798168311217}{192892299855416} a^{16} - \frac{37563325613225}{1543138398843328} a^{15} + \frac{116899289997}{55112085672976} a^{14} - \frac{412413200531}{13778021418244} a^{13} - \frac{32565857672685}{1543138398843328} a^{12} + \frac{265677085587}{13778021418244} a^{11} + \frac{35905266589001}{771569199421664} a^{10} + \frac{180238389266177}{3086276797686656} a^{9} + \frac{7322499935897}{1543138398843328} a^{8} - \frac{196129838037045}{1543138398843328} a^{7} + \frac{2725496106423}{25935099140224} a^{6} + \frac{243497534519637}{1543138398843328} a^{5} + \frac{52038223087703}{771569199421664} a^{4} - \frac{13049912658891}{48223074963854} a^{3} - \frac{19931360727339}{48223074963854} a^{2} + \frac{22958338540321}{48223074963854} a + \frac{4607508030389}{24111537481927}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 167976253.311 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22 |
| The 7 conjugacy class representatives for $D_{11}$ |
| Character table for $D_{11}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 11.1.4177248169415651.1 x11 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 11 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{11}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||