Normalized defining polynomial
\( x^{22} + 134 x^{20} + 6968 x^{18} + 181704 x^{16} + 2564224 x^{14} + 19630464 x^{12} + 77539904 x^{10} + 145088768 x^{8} + 131212800 x^{6} + 54371840 x^{4} + 8027136 x^{2} + 137216 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1912320645087103459758821027834145013889251672064=-\,2^{33}\cdot 67^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(536=2^{3}\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{536}(1,·)$, $\chi_{536}(5,·)$, $\chi_{536}(129,·)$, $\chi_{536}(9,·)$, $\chi_{536}(109,·)$, $\chi_{536}(45,·)$, $\chi_{536}(81,·)$, $\chi_{536}(405,·)$, $\chi_{536}(89,·)$, $\chi_{536}(25,·)$, $\chi_{536}(477,·)$, $\chi_{536}(133,·)$, $\chi_{536}(417,·)$, $\chi_{536}(193,·)$, $\chi_{536}(225,·)$, $\chi_{536}(125,·)$, $\chi_{536}(429,·)$, $\chi_{536}(253,·)$, $\chi_{536}(241,·)$, $\chi_{536}(53,·)$, $\chi_{536}(265,·)$, $\chi_{536}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{7424} a^{16} + \frac{1}{3712} a^{14} + \frac{13}{1856} a^{12} + \frac{1}{232} a^{10} - \frac{11}{464} a^{8} + \frac{11}{232} a^{6} + \frac{5}{116} a^{4} - \frac{7}{58} a^{2} - \frac{5}{29}$, $\frac{1}{7424} a^{17} + \frac{1}{3712} a^{15} + \frac{13}{1856} a^{13} + \frac{1}{232} a^{11} - \frac{11}{464} a^{9} + \frac{11}{232} a^{7} + \frac{5}{116} a^{5} - \frac{7}{58} a^{3} - \frac{5}{29} a$, $\frac{1}{53289472} a^{18} - \frac{861}{13322368} a^{16} + \frac{13399}{13322368} a^{14} - \frac{10623}{1665296} a^{12} - \frac{18677}{3330592} a^{10} - \frac{44343}{1665296} a^{8} - \frac{10895}{416324} a^{6} + \frac{16753}{416324} a^{4} + \frac{25023}{104081} a^{2} + \frac{7629}{104081}$, $\frac{1}{53289472} a^{19} - \frac{861}{13322368} a^{17} + \frac{13399}{13322368} a^{15} - \frac{10623}{1665296} a^{13} - \frac{18677}{3330592} a^{11} - \frac{44343}{1665296} a^{9} - \frac{10895}{416324} a^{7} + \frac{16753}{416324} a^{5} + \frac{25023}{104081} a^{3} + \frac{7629}{104081} a$, $\frac{1}{12052411743922328507392} a^{20} + \frac{450965691453}{188318933498786382928} a^{18} - \frac{178006461792639605}{3013102935980582126848} a^{16} - \frac{2346707019078143843}{1506551467990291063424} a^{14} - \frac{179814978765154111}{23539866687348297866} a^{12} + \frac{2913900756043386233}{376637866997572765856} a^{10} + \frac{1374789881909054205}{94159466749393191464} a^{8} + \frac{1845313819336860951}{47079733374696595732} a^{6} + \frac{3036278358663837739}{47079733374696595732} a^{4} - \frac{2278692966717626914}{11769933343674148933} a^{2} - \frac{1757122307640656399}{11769933343674148933}$, $\frac{1}{12052411743922328507392} a^{21} + \frac{450965691453}{188318933498786382928} a^{19} - \frac{178006461792639605}{3013102935980582126848} a^{17} - \frac{2346707019078143843}{1506551467990291063424} a^{15} - \frac{179814978765154111}{23539866687348297866} a^{13} + \frac{2913900756043386233}{376637866997572765856} a^{11} + \frac{1374789881909054205}{94159466749393191464} a^{9} + \frac{1845313819336860951}{47079733374696595732} a^{7} + \frac{3036278358663837739}{47079733374696595732} a^{5} - \frac{2278692966717626914}{11769933343674148933} a^{3} - \frac{1757122307640656399}{11769933343674148933} a$
Class group and class number
$C_{1397102}$, which has order $1397102$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338444542.042557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-134}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 67 | Data not computed | ||||||