Normalized defining polynomial
\( x^{22} - x^{21} + 5 x^{20} + 101 x^{19} + 89 x^{18} + 1411 x^{17} + 1852 x^{16} + 6372 x^{15} + 95687 x^{14} + 67013 x^{13} + 200007 x^{12} + 271590 x^{11} + 1689686 x^{10} + 5135296 x^{9} + 3820034 x^{8} - 16592675 x^{7} - 17889931 x^{6} + 47956306 x^{5} + 297595974 x^{4} + 630276336 x^{3} + 836966655 x^{2} + 621199012 x + 181383703 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1887620149539230539058375534310517606114631604199=-\,199^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(199\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{199}(1,·)$, $\chi_{199}(11,·)$, $\chi_{199}(198,·)$, $\chi_{199}(136,·)$, $\chi_{199}(137,·)$, $\chi_{199}(138,·)$, $\chi_{199}(139,·)$, $\chi_{199}(78,·)$, $\chi_{199}(18,·)$, $\chi_{199}(85,·)$, $\chi_{199}(96,·)$, $\chi_{199}(103,·)$, $\chi_{199}(60,·)$, $\chi_{199}(125,·)$, $\chi_{199}(114,·)$, $\chi_{199}(74,·)$, $\chi_{199}(181,·)$, $\chi_{199}(121,·)$, $\chi_{199}(188,·)$, $\chi_{199}(61,·)$, $\chi_{199}(62,·)$, $\chi_{199}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1591} a^{19} - \frac{673}{1591} a^{18} + \frac{287}{1591} a^{17} + \frac{626}{1591} a^{16} + \frac{724}{1591} a^{15} + \frac{39}{1591} a^{14} - \frac{165}{1591} a^{13} - \frac{193}{1591} a^{12} + \frac{53}{1591} a^{11} - \frac{171}{1591} a^{10} + \frac{445}{1591} a^{9} + \frac{743}{1591} a^{8} - \frac{219}{1591} a^{7} + \frac{440}{1591} a^{6} + \frac{173}{1591} a^{5} - \frac{47}{1591} a^{4} + \frac{355}{1591} a^{3} + \frac{382}{1591} a^{2} - \frac{154}{1591} a + \frac{235}{1591}$, $\frac{1}{106512999973} a^{20} + \frac{22318269}{106512999973} a^{19} + \frac{33132313307}{106512999973} a^{18} - \frac{22014274871}{106512999973} a^{17} - \frac{6908323294}{106512999973} a^{16} + \frac{1991682719}{106512999973} a^{15} + \frac{39282419327}{106512999973} a^{14} - \frac{32154011330}{106512999973} a^{13} - \frac{1331989594}{106512999973} a^{12} - \frac{3934366371}{106512999973} a^{11} + \frac{48912338815}{106512999973} a^{10} + \frac{39840693453}{106512999973} a^{9} - \frac{21519140725}{106512999973} a^{8} + \frac{4923656631}{106512999973} a^{7} + \frac{33089280822}{106512999973} a^{6} + \frac{41341856277}{106512999973} a^{5} - \frac{42863931935}{106512999973} a^{4} - \frac{51439502170}{106512999973} a^{3} - \frac{39609210636}{106512999973} a^{2} - \frac{51948261240}{106512999973} a - \frac{32317086955}{106512999973}$, $\frac{1}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{21} + \frac{162822000456843876462857518744941368998981495046966398584370468462250311}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{20} + \frac{10622242638220265868601881430097391503920079222353380776141306411842584618371029}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{19} + \frac{15212152248546878256568448260798908432709693193151671887276608209457050958544378515}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{18} - \frac{33329257651247435335305488358405617929756888034387671359684262065507339415145529774}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{17} - \frac{3300068633217283332391517068039253606558409059361352899685841265858777728635227196}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{16} - \frac{20883274950982910383899485447211685206513616205298230389521076756581586787111399853}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{15} + \frac{15963245862354564131038634431345851287790765264012221014990334945860020931011938536}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{14} - \frac{34016666149278401142036621547774644175349648540306735061019109703413991878968337057}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{13} - \frac{38091823515919176469284388950737026723142043321789879799566909325098995403969009311}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{12} + \frac{30756322694609618178014469144632350276005667093890435616146609890649167902081157921}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{11} + \frac{716110559845565955475763329139692354669947680169877631217360479039726869373954433}{1991797590684308170879922945668995230517968344445218470288302586841306933769708257} a^{10} - \frac{21976654052125860312317704440717507795365786623133987958826134004948759691241404579}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{9} - \frac{9489333552525689841848900961542194088182932014356016865524132321902270300113836196}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{8} - \frac{42721987603542758922228275344994865407946945589593894837970630187892968767584180681}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{7} + \frac{26368036566331410590069846272568904072181142416572994025993318741064946645578347590}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{6} - \frac{119781923392593889767672562358496036113055906570310154807693551555364955174013012}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{5} + \frac{6961266430839144611236339027946144561845446435892301984513107875786051759221684850}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{4} + \frac{26710107214742725467697773952622997416969163832284211965441603486886766517546234042}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{3} - \frac{34925445936866825047003062379759451253556931060272518355654178755972994632190790354}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a^{2} + \frac{40011786519054234244920780273302755114941975789171084771861941952599833907144460528}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051} a - \frac{12398401746011092137523221577484351686676759205375820204331404984658199965055232742}{85647296399425251347836686663766794912272638811144394222397011234176198152097455051}$
Class group and class number
$C_{6543}$, which has order $6543$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117135822355.96071 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-199}) \), 11.11.97393677359695041798001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 199 | Data not computed | ||||||