Normalized defining polynomial
\( x^{22} + 22 x^{20} + 231 x^{18} - 77 x^{17} + 1639 x^{16} - 913 x^{15} + 8855 x^{14} - 4796 x^{13} + 43703 x^{12} - 8698 x^{11} + 165286 x^{10} - 1177 x^{9} + 523688 x^{8} + 166903 x^{7} + 1297219 x^{6} + 434522 x^{5} + 2198856 x^{4} + 519860 x^{3} + 2214300 x^{2} + 161128 x + 1129696 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1813051562475086060499058416925217792=-\,2^{10}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} + \frac{1}{8} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{16} - \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{5}{16} a^{13} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{5}{16} a^{8} - \frac{3}{8} a^{7} + \frac{5}{16} a^{6} - \frac{5}{16} a^{5} + \frac{5}{16} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{17} - \frac{1}{16} a^{14} + \frac{5}{16} a^{13} - \frac{3}{8} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{7}{16} a^{9} + \frac{1}{8} a^{8} + \frac{7}{16} a^{7} + \frac{1}{16} a^{6} - \frac{7}{16} a^{5} - \frac{3}{8} a^{3}$, $\frac{1}{32} a^{20} - \frac{1}{32} a^{18} - \frac{1}{8} a^{16} - \frac{1}{32} a^{15} - \frac{3}{32} a^{14} + \frac{5}{16} a^{13} + \frac{3}{8} a^{12} - \frac{3}{32} a^{10} - \frac{5}{16} a^{9} - \frac{13}{32} a^{8} - \frac{3}{32} a^{7} - \frac{7}{32} a^{6} + \frac{3}{8} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{79953268838804405227260121464471955637722236818429204389312} a^{21} - \frac{791730064755659027549883635312650652921059742127471233073}{79953268838804405227260121464471955637722236818429204389312} a^{20} + \frac{2398542705961041972948713147049578413985796055611791435157}{79953268838804405227260121464471955637722236818429204389312} a^{19} - \frac{1926082093150823749260454742526333900267419896105906249233}{79953268838804405227260121464471955637722236818429204389312} a^{18} + \frac{1143351461021479074388717152995976178563198878650270503521}{39976634419402202613630060732235977818861118409214602194656} a^{17} - \frac{9656258821958996787327555709722120740170652087607627203203}{79953268838804405227260121464471955637722236818429204389312} a^{16} + \frac{1630380274223740172707439511113821537977736869093724584365}{39976634419402202613630060732235977818861118409214602194656} a^{15} + \frac{2632207582082110658303266866187386110261701132509241877015}{79953268838804405227260121464471955637722236818429204389312} a^{14} + \frac{3626845384292395599637421011823108822140008965062856105185}{39976634419402202613630060732235977818861118409214602194656} a^{13} - \frac{2670623641983704070410606012240388187189987790847271286579}{39976634419402202613630060732235977818861118409214602194656} a^{12} - \frac{5398066255916612165344769886830018257767705107676434353339}{79953268838804405227260121464471955637722236818429204389312} a^{11} - \frac{3489846434159735011986861468169300898019080620957521286303}{79953268838804405227260121464471955637722236818429204389312} a^{10} - \frac{5911269512447719242016294573793358691252092363443777629861}{79953268838804405227260121464471955637722236818429204389312} a^{9} - \frac{4041336340666292307492973039223097671310477478967004717211}{19988317209701101306815030366117988909430559204607301097328} a^{8} + \frac{5645785734199628231425577880231875934615329562775296366479}{39976634419402202613630060732235977818861118409214602194656} a^{7} + \frac{13586280973150102060677328632265001589236892783362668280971}{79953268838804405227260121464471955637722236818429204389312} a^{6} + \frac{16820480516142430747749192307191269602862414116493177466169}{39976634419402202613630060732235977818861118409214602194656} a^{5} + \frac{990761153339001126646812412532649210747593949429361462107}{19988317209701101306815030366117988909430559204607301097328} a^{4} + \frac{3616716294432972799653197713433919177999565024730307892305}{9994158604850550653407515183058994454715279602303650548664} a^{3} + \frac{6797565533271860734642658770120539939797429430417416198661}{19988317209701101306815030366117988909430559204607301097328} a^{2} - \frac{2864065591913625335503245358885495519970498570751827766615}{9994158604850550653407515183058994454715279602303650548664} a + \frac{902305587687921906146368835503453268046218746412498870375}{2498539651212637663351878795764748613678819900575912637166}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 163923304373 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24200 |
| The 77 conjugacy class representatives for t22n31 are not computed |
| Character table for t22n31 is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 44 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | $20{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.12.3 | $x^{11} + 77 x^{2} + 11$ | $11$ | $1$ | $12$ | $C_{11}:C_5$ | $[6/5]_{5}$ |
| 11.11.11.4 | $x^{11} + 77 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |