Properties

Label 22.0.17439872320...7947.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,3^{11}\cdot 74843^{8}$
Root discriminant $102.56$
Ramified primes $3, 74843$
Class number $28640$ (GRH)
Class group $[2, 2, 2, 3580]$ (GRH)
Galois group 22T13

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31329, -69384, 186586, -171702, 295910, -168141, 304613, -108043, 209993, -38992, 107932, -9695, 38977, -1280, 10498, -106, 1934, -4, 257, 0, 20, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 20*x^20 + 257*x^18 - 4*x^17 + 1934*x^16 - 106*x^15 + 10498*x^14 - 1280*x^13 + 38977*x^12 - 9695*x^11 + 107932*x^10 - 38992*x^9 + 209993*x^8 - 108043*x^7 + 304613*x^6 - 168141*x^5 + 295910*x^4 - 171702*x^3 + 186586*x^2 - 69384*x + 31329)
 
gp: K = bnfinit(x^22 + 20*x^20 + 257*x^18 - 4*x^17 + 1934*x^16 - 106*x^15 + 10498*x^14 - 1280*x^13 + 38977*x^12 - 9695*x^11 + 107932*x^10 - 38992*x^9 + 209993*x^8 - 108043*x^7 + 304613*x^6 - 168141*x^5 + 295910*x^4 - 171702*x^3 + 186586*x^2 - 69384*x + 31329, 1)
 

Normalized defining polynomial

\( x^{22} + 20 x^{20} + 257 x^{18} - 4 x^{17} + 1934 x^{16} - 106 x^{15} + 10498 x^{14} - 1280 x^{13} + 38977 x^{12} - 9695 x^{11} + 107932 x^{10} - 38992 x^{9} + 209993 x^{8} - 108043 x^{7} + 304613 x^{6} - 168141 x^{5} + 295910 x^{4} - 171702 x^{3} + 186586 x^{2} - 69384 x + 31329 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-174398723209634833558490883294218000698177947=-\,3^{11}\cdot 74843^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $102.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 74843$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{16} - \frac{1}{9} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{2}{9} a^{12} - \frac{1}{9} a^{11} - \frac{2}{9} a^{10} - \frac{1}{9} a^{9} - \frac{2}{9} a^{8} + \frac{2}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{2}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{17} + \frac{4}{27} a^{15} + \frac{4}{9} a^{14} - \frac{8}{27} a^{13} + \frac{10}{27} a^{12} + \frac{5}{27} a^{11} - \frac{8}{27} a^{10} - \frac{4}{27} a^{9} + \frac{13}{27} a^{8} + \frac{1}{27} a^{7} + \frac{2}{9} a^{6} - \frac{11}{27} a^{5} - \frac{2}{9} a^{4} - \frac{5}{27} a^{3} + \frac{1}{27} a^{2} - \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{19} - \frac{1}{27} a^{17} + \frac{4}{27} a^{16} - \frac{1}{27} a^{15} + \frac{7}{27} a^{14} + \frac{4}{27} a^{12} - \frac{4}{27} a^{11} + \frac{4}{27} a^{10} - \frac{1}{27} a^{9} - \frac{4}{9} a^{8} - \frac{13}{27} a^{7} + \frac{10}{27} a^{6} - \frac{13}{27} a^{5} + \frac{10}{27} a^{4} - \frac{4}{9} a^{3} - \frac{13}{27} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{81} a^{20} - \frac{1}{81} a^{19} - \frac{1}{81} a^{18} - \frac{4}{81} a^{17} + \frac{4}{81} a^{16} - \frac{10}{81} a^{15} - \frac{7}{81} a^{14} - \frac{23}{81} a^{13} - \frac{17}{81} a^{12} + \frac{17}{81} a^{11} - \frac{14}{81} a^{10} + \frac{25}{81} a^{9} - \frac{10}{81} a^{8} + \frac{32}{81} a^{7} - \frac{23}{81} a^{6} - \frac{4}{81} a^{5} - \frac{31}{81} a^{4} - \frac{10}{81} a^{3} + \frac{7}{81} a^{2} + \frac{11}{27} a + \frac{4}{9}$, $\frac{1}{471808023562399806951227033399334309527739} a^{21} - \frac{6151805265667535752407984387143517349}{7996746162074572999173339549141259483521} a^{20} + \frac{303137647204878964783132449894686735804}{157269341187466602317075677799778103175913} a^{19} + \frac{25414532733490379509691730374254796}{888527351341619222130371061015695498169} a^{18} + \frac{12263509029388391339781579237356544504521}{471808023562399806951227033399334309527739} a^{17} + \frac{17620149356244351978352914230350596401962}{471808023562399806951227033399334309527739} a^{16} + \frac{8211416891672748170276463061916057931268}{157269341187466602317075677799778103175913} a^{15} - \frac{163898917002460679031883072230999234561055}{471808023562399806951227033399334309527739} a^{14} - \frac{23640871518643492850644059219026927069903}{157269341187466602317075677799778103175913} a^{13} + \frac{7026326966668249837536583822935241255918}{471808023562399806951227033399334309527739} a^{12} + \frac{187970693481581418351053294829045984749498}{471808023562399806951227033399334309527739} a^{11} - \frac{54412847489917067145856590633260673783953}{157269341187466602317075677799778103175913} a^{10} + \frac{161581961983645972057307751546284882566471}{471808023562399806951227033399334309527739} a^{9} - \frac{20006564153779071729945902692963194349714}{52423113729155534105691892599926034391971} a^{8} + \frac{64960739187047758084250992827535375004828}{471808023562399806951227033399334309527739} a^{7} + \frac{25180413528213883015205473766104548825961}{471808023562399806951227033399334309527739} a^{6} - \frac{3214193371912374462897319340069146598933}{52423113729155534105691892599926034391971} a^{5} - \frac{10924025574575169351555043714956924296795}{52423113729155534105691892599926034391971} a^{4} + \frac{214183039554181687580377430658487072584968}{471808023562399806951227033399334309527739} a^{3} - \frac{104976482323184395889017681350082868668783}{471808023562399806951227033399334309527739} a^{2} - \frac{76660932460861883840463590445903874327418}{157269341187466602317075677799778103175913} a + \frac{204996728260261065526762903819883370367}{888527351341619222130371061015695498169}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{3580}$, which has order $28640$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{780005801753936508236165602688951723}{52423113729155534105691892599926034391971} a^{21} + \frac{6337205511265447496471023452401072}{888527351341619222130371061015695498169} a^{20} - \frac{579150767410917296966095259549324686}{1941596804783538300210810837034297570073} a^{19} + \frac{38791800808653086907082054788860948}{296175783780539740710123687005231832723} a^{18} - \frac{201003393884562823128175217983624500442}{52423113729155534105691892599926034391971} a^{17} + \frac{87683167843314358486370788595419227421}{52423113729155534105691892599926034391971} a^{16} - \frac{505348365938842051441353078753720209605}{17474371243051844701897297533308678130657} a^{15} + \frac{661567441580962534478140395559403700497}{52423113729155534105691892599926034391971} a^{14} - \frac{305735674019136297331803945423854310474}{1941596804783538300210810837034297570073} a^{13} + \frac{3902168073043082439950450579515045432666}{52423113729155534105691892599926034391971} a^{12} - \frac{30928744070292807923050535040752721376741}{52423113729155534105691892599926034391971} a^{11} + \frac{623099160909762991546498494824359824722}{1941596804783538300210810837034297570073} a^{10} - \frac{87170703265341430107894588869060393016407}{52423113729155534105691892599926034391971} a^{9} + \frac{17525115536459106503230473553349989884763}{17474371243051844701897297533308678130657} a^{8} - \frac{173089446315676651155989703666458775375391}{52423113729155534105691892599926034391971} a^{7} + \frac{114470001652877009473252300532124887057836}{52423113729155534105691892599926034391971} a^{6} - \frac{85860824872185235359320214468871146620024}{17474371243051844701897297533308678130657} a^{5} + \frac{53661791506390092531761056676391254168401}{17474371243051844701897297533308678130657} a^{4} - \frac{244846484586629283522955448580948911433871}{52423113729155534105691892599926034391971} a^{3} + \frac{113620174147161104568687308718760886178032}{52423113729155534105691892599926034391971} a^{2} - \frac{49436359883918823306859676862328154986415}{17474371243051844701897297533308678130657} a + \frac{104421662751167631560332390247769921247}{98725261260179913570041229001743944241} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3049992559.69 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T13:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1320
The 16 conjugacy class representatives for t22n13
Character table for t22n13

Intermediate fields

\(\Q(\sqrt{-3}) \), 11.11.31376518243389673201.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 24 sibling: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ $22$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ $22$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ $22$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ $22$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ $22$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
74843Data not computed