Properties

Label 22.0.17223996747...5547.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,3^{11}\cdot 89^{20}$
Root discriminant $102.50$
Ramified primes $3, 89$
Class number $26687$ (GRH)
Class group $[26687]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 57, 2468, 38213, 430399, 2471155, 10139143, 3087160, 7018057, 1130011, 3278352, 310631, 810728, 41908, 143572, 4521, 15187, 120, 1137, 2, 41, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 41*x^20 + 2*x^19 + 1137*x^18 + 120*x^17 + 15187*x^16 + 4521*x^15 + 143572*x^14 + 41908*x^13 + 810728*x^12 + 310631*x^11 + 3278352*x^10 + 1130011*x^9 + 7018057*x^8 + 3087160*x^7 + 10139143*x^6 + 2471155*x^5 + 430399*x^4 + 38213*x^3 + 2468*x^2 + 57*x + 1)
 
gp: K = bnfinit(x^22 - x^21 + 41*x^20 + 2*x^19 + 1137*x^18 + 120*x^17 + 15187*x^16 + 4521*x^15 + 143572*x^14 + 41908*x^13 + 810728*x^12 + 310631*x^11 + 3278352*x^10 + 1130011*x^9 + 7018057*x^8 + 3087160*x^7 + 10139143*x^6 + 2471155*x^5 + 430399*x^4 + 38213*x^3 + 2468*x^2 + 57*x + 1, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 41 x^{20} + 2 x^{19} + 1137 x^{18} + 120 x^{17} + 15187 x^{16} + 4521 x^{15} + 143572 x^{14} + 41908 x^{13} + 810728 x^{12} + 310631 x^{11} + 3278352 x^{10} + 1130011 x^{9} + 7018057 x^{8} + 3087160 x^{7} + 10139143 x^{6} + 2471155 x^{5} + 430399 x^{4} + 38213 x^{3} + 2468 x^{2} + 57 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-172239967478675757728235268038638014589675547=-\,3^{11}\cdot 89^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $102.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(267=3\cdot 89\)
Dirichlet character group:    $\lbrace$$\chi_{267}(128,·)$, $\chi_{267}(1,·)$, $\chi_{267}(2,·)$, $\chi_{267}(67,·)$, $\chi_{267}(4,·)$, $\chi_{267}(134,·)$, $\chi_{267}(8,·)$, $\chi_{267}(194,·)$, $\chi_{267}(256,·)$, $\chi_{267}(16,·)$, $\chi_{267}(217,·)$, $\chi_{267}(91,·)$, $\chi_{267}(223,·)$, $\chi_{267}(32,·)$, $\chi_{267}(97,·)$, $\chi_{267}(167,·)$, $\chi_{267}(64,·)$, $\chi_{267}(242,·)$, $\chi_{267}(179,·)$, $\chi_{267}(245,·)$, $\chi_{267}(182,·)$, $\chi_{267}(121,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} - \frac{16}{37} a^{14} - \frac{13}{37} a^{13} + \frac{5}{37} a^{12} - \frac{5}{37} a^{11} + \frac{2}{37} a^{10} + \frac{15}{37} a^{9} + \frac{9}{37} a^{8} + \frac{3}{37} a^{7} - \frac{18}{37} a^{6} + \frac{15}{37} a^{5} - \frac{11}{37} a^{4} - \frac{3}{37} a^{2} + \frac{18}{37} a - \frac{2}{37}$, $\frac{1}{37} a^{17} - \frac{16}{37} a^{15} - \frac{13}{37} a^{14} + \frac{5}{37} a^{13} - \frac{5}{37} a^{12} + \frac{2}{37} a^{11} + \frac{15}{37} a^{10} + \frac{9}{37} a^{9} + \frac{3}{37} a^{8} - \frac{18}{37} a^{7} + \frac{15}{37} a^{6} - \frac{11}{37} a^{5} - \frac{3}{37} a^{3} + \frac{18}{37} a^{2} - \frac{2}{37} a$, $\frac{1}{37} a^{18} - \frac{13}{37} a^{15} + \frac{8}{37} a^{14} + \frac{9}{37} a^{13} + \frac{8}{37} a^{12} + \frac{9}{37} a^{11} + \frac{4}{37} a^{10} - \frac{16}{37} a^{9} + \frac{15}{37} a^{8} - \frac{11}{37} a^{7} - \frac{3}{37} a^{6} + \frac{18}{37} a^{5} + \frac{6}{37} a^{4} + \frac{18}{37} a^{3} - \frac{13}{37} a^{2} - \frac{8}{37} a + \frac{5}{37}$, $\frac{1}{37} a^{19} + \frac{8}{37} a^{15} - \frac{14}{37} a^{14} - \frac{13}{37} a^{13} + \frac{13}{37} a^{11} + \frac{10}{37} a^{10} - \frac{12}{37} a^{9} - \frac{5}{37} a^{8} - \frac{1}{37} a^{7} + \frac{6}{37} a^{6} + \frac{16}{37} a^{5} - \frac{14}{37} a^{4} - \frac{13}{37} a^{3} - \frac{10}{37} a^{2} + \frac{17}{37} a + \frac{11}{37}$, $\frac{1}{677618999} a^{20} + \frac{8725065}{677618999} a^{19} - \frac{8725025}{677618999} a^{18} + \frac{1484012}{677618999} a^{17} + \frac{5782310}{677618999} a^{16} - \frac{251964725}{677618999} a^{15} - \frac{291121836}{677618999} a^{14} - \frac{269975762}{677618999} a^{13} + \frac{108978411}{677618999} a^{12} + \frac{257147335}{677618999} a^{11} - \frac{334431280}{677618999} a^{10} + \frac{119144966}{677618999} a^{9} + \frac{123475180}{677618999} a^{8} + \frac{301003860}{677618999} a^{7} - \frac{312011}{18314027} a^{6} - \frac{305751806}{677618999} a^{5} - \frac{174722583}{677618999} a^{4} + \frac{245688669}{677618999} a^{3} + \frac{176777734}{677618999} a^{2} + \frac{325792058}{677618999} a + \frac{17852831}{677618999}$, $\frac{1}{1431402635546355341010628913986304713812742282995233291} a^{21} - \frac{14455656087866041995712211891222207814617540}{38686557717469063270557538215846073346290331972844143} a^{20} - \frac{2739654781010152897839188660175155725602264757822158}{1431402635546355341010628913986304713812742282995233291} a^{19} + \frac{4328700293765315464302064376660377026559618806186674}{1431402635546355341010628913986304713812742282995233291} a^{18} - \frac{253212604315421609420602710893150963358346540655722}{1431402635546355341010628913986304713812742282995233291} a^{17} + \frac{2964341033172080296941058871531909928561400063920778}{1431402635546355341010628913986304713812742282995233291} a^{16} + \frac{338512118305658304683016601997016727667196503442385916}{1431402635546355341010628913986304713812742282995233291} a^{15} - \frac{6644273343983167747902861740225293891983941899884443}{14172303322241141990204246673131729839730121613814191} a^{14} - \frac{30141186410116912992417794585256352899853802503776999}{1431402635546355341010628913986304713812742282995233291} a^{13} - \frac{221547065009198839829313983058166304815897725391254091}{1431402635546355341010628913986304713812742282995233291} a^{12} - \frac{642141801718510365563669938588642383254255806470896152}{1431402635546355341010628913986304713812742282995233291} a^{11} + \frac{262217159348075379110682605302065921728842994660826881}{1431402635546355341010628913986304713812742282995233291} a^{10} - \frac{484301032747408903570645947277215897456242569358169332}{1431402635546355341010628913986304713812742282995233291} a^{9} + \frac{377857679079550695343596619237991070468313894485283481}{1431402635546355341010628913986304713812742282995233291} a^{8} + \frac{420270372638783765312091163024571981072252633775281771}{1431402635546355341010628913986304713812742282995233291} a^{7} - \frac{355556274175537259176499511853388971630309990960307956}{1431402635546355341010628913986304713812742282995233291} a^{6} + \frac{706032880040586976284449475694073101840932177007760704}{1431402635546355341010628913986304713812742282995233291} a^{5} + \frac{714076173370085184918544221864118068054128629828620234}{1431402635546355341010628913986304713812742282995233291} a^{4} + \frac{124729345550843324111251992756875090314724091671322544}{1431402635546355341010628913986304713812742282995233291} a^{3} + \frac{178419308321328370498069130610763448847072021020383273}{1431402635546355341010628913986304713812742282995233291} a^{2} + \frac{699699776346572599770176276616673452069346265395830522}{1431402635546355341010628913986304713812742282995233291} a - \frac{455458692192623861463183658503677333790873950816899083}{1431402635546355341010628913986304713812742282995233291}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{26687}$, which has order $26687$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{2082286119811400686673182217458871706156402892}{78158814309182537571372419292944403424366595233} a^{21} + \frac{57683604138671407861421121966735188086948354}{2112400386734663177604659980890389281739637709} a^{20} - \frac{85429537839634429379349219956531887651266580946}{78158814309182537571372419292944403424366595233} a^{19} - \frac{2028194954856803300455009812801688974075048804}{78158814309182537571372419292944403424366595233} a^{18} - \frac{2367611424467478235238356863615047781719681470579}{78158814309182537571372419292944403424366595233} a^{17} - \frac{190738136300728599339667211923660556652865472668}{78158814309182537571372419292944403424366595233} a^{16} - \frac{31621760266270877738471642153126218504333875463876}{78158814309182537571372419292944403424366595233} a^{15} - \frac{8624318256260148820472237415037929449045032238551}{78158814309182537571372419292944403424366595233} a^{14} - \frac{298780589818760219781950368196905963443180817146984}{78158814309182537571372419292944403424366595233} a^{13} - \frac{79810581303879851110042193764949783607789712774030}{78158814309182537571372419292944403424366595233} a^{12} - \frac{1686533196985529575547644367301890856167643103335958}{78158814309182537571372419292944403424366595233} a^{11} - \frac{604778018193833757099335514472262560053218777992570}{78158814309182537571372419292944403424366595233} a^{10} - \frac{6813388077595533375888158968318948151927367080936306}{78158814309182537571372419292944403424366595233} a^{9} - \frac{2183462727494610907131055824125188381450033964044075}{78158814309182537571372419292944403424366595233} a^{8} - \frac{14567245929183247435450871160057877114044113193688586}{78158814309182537571372419292944403424366595233} a^{7} - \frac{6066747523884033041352860517018363332321892775783376}{78158814309182537571372419292944403424366595233} a^{6} - \frac{20978563123909311728581505228572755740867044722610942}{78158814309182537571372419292944403424366595233} a^{5} - \frac{4628150493436084432997131632962821204882910448326376}{78158814309182537571372419292944403424366595233} a^{4} - \frac{805721582240251007790751065441636388607304977423770}{78158814309182537571372419292944403424366595233} a^{3} - \frac{63836035181700145034628814133912692933108544122946}{78158814309182537571372419292944403424366595233} a^{2} - \frac{4619361989575845689866566106333599312178590149410}{78158814309182537571372419292944403424366595233} a - \frac{28527008476144232141858770825719404474429016585}{78158814309182537571372419292944403424366595233} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 866679281.3791491 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 11.11.31181719929966183601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ R $22$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ $22$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ $22$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
89Data not computed