Normalized defining polynomial
\( x^{22} - x^{21} + 136 x^{20} - 141 x^{19} + 6933 x^{18} - 11219 x^{17} + 176727 x^{16} - 447777 x^{15} + 2849200 x^{14} - 9627703 x^{13} + 31913346 x^{12} - 114648803 x^{11} + 293038974 x^{10} - 732575214 x^{9} + 2085803018 x^{8} - 3042652387 x^{7} + 8079316286 x^{6} - 13226651538 x^{5} + 17433518072 x^{4} - 19326356701 x^{3} + 19500553636 x^{2} - 6880449063 x + 7438698677 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-171107316284804096938603185096461792835715406634527=-\,7^{11}\cdot 89^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $192.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(623=7\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{623}(512,·)$, $\chi_{623}(1,·)$, $\chi_{623}(134,·)$, $\chi_{623}(449,·)$, $\chi_{623}(8,·)$, $\chi_{623}(265,·)$, $\chi_{623}(139,·)$, $\chi_{623}(78,·)$, $\chi_{623}(146,·)$, $\chi_{623}(622,·)$, $\chi_{623}(111,·)$, $\chi_{623}(477,·)$, $\chi_{623}(545,·)$, $\chi_{623}(484,·)$, $\chi_{623}(358,·)$, $\chi_{623}(615,·)$, $\chi_{623}(64,·)$, $\chi_{623}(174,·)$, $\chi_{623}(559,·)$, $\chi_{623}(372,·)$, $\chi_{623}(489,·)$, $\chi_{623}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{21} - \frac{95201848919148703934495330212036107898179690722613729460427026457134297473455648567343521030991246527719105877081503398}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{20} - \frac{146448701341727562513876624361110035732285346749063457343708276024313728235255741189795818346247320221324222032808103319}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{19} + \frac{145469735587492842274016608974900575735593939922528688724969724031896682037119661462688331734096877230800700758461085907}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{18} + \frac{66206741431971167612540105642386766595773403310318689445548395566219424079437703362065634304713521519503853756961517380}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{17} - \frac{35937435977976907946968497548297944472890176691370027042747413663975110732966521098262198396059130478276306155104334533}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{16} + \frac{74541827796156727519689249703177598195058264463692558491342509156665040756065864927297150368256966003748833886160226311}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{15} + \frac{125586120022799513611682053000235374723499853381433576704928218153700444448812499704585149272265174738968950439244657435}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{14} - \frac{89831361141364384771079670641521355815296504998328391935240015766897157415464320400141042229690394512554055551880909144}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{13} - \frac{151599869488999563064511102053261901976406792280597705085692849930873279969167144392366745157949499219003797837652015909}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{12} + \frac{112249654870078296688461291170091191214623754945879068525951897693274816428251734813522779630812033963110579212823731428}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{11} + \frac{134150764800660476278212574972666241035733797134559683934337335492439521045856331372346986418301388368133858863030703927}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{10} + \frac{47004549420464121550972080070904663209277150894450839093912231124509573330760660360890239162771618932756061726404197033}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{9} + \frac{46159223060467833705281213604568094083093375481238892893170783045062345101336308674330758633798552713937453040822077115}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{8} + \frac{97922935572817381040274233185838135054480048236661048490327053282470785608104212673146706462314516020305517916588776033}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{7} - \frac{4623305251476663895956182021806031554983200100276585732927240972245149631757813351946528745166436527159128993589756239}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{6} + \frac{60001254860515816084337644658567902565649576656286461009897290598073938821438719927801381995007109316272358146150365797}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{5} + \frac{57319144160453752064746343378757919894352430234090942743048481179898445153835594126203352828153755538423731552238489999}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{4} + \frac{141971828998974141064414918269017010632417597602985568877933716848341381873631587950962289541563546139014801919950250459}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{3} + \frac{48952883523519256941931515931880755769313265747915927969114890654093947346108732936861310352629015769394466148344454497}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a^{2} - \frac{24368352988697977330527102368527570046995067716869389368030027500987032442278016041440435732629751555796599190750723798}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017} a + \frac{105325166440600218823144924638333762006368580632803355941532793894999960840052811094229495511600026818620896471278367670}{323284824061388685705481282020718816217594122872411376771932719287792515664529421869234537909647110901149506234591060017}$
Class group and class number
$C_{6596678}$, which has order $6596678$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866679281.3791491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-623}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 89 | Data not computed | ||||||