Properties

Label 22.0.17072676275...9239.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,23^{20}\cdot 47\cdot 2116640137$
Root discriminant $54.68$
Ramified primes $23, 47, 2116640137$
Class number $6878$ (GRH)
Class group $[6878]$ (GRH)
Galois group 22T28

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![177147, -59049, 452709, -137781, 570807, -158193, 465345, -116721, 271323, -60993, 118485, -23525, 39495, -6777, 10049, -1441, 1915, -217, 261, -21, 23, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 23*x^20 - 21*x^19 + 261*x^18 - 217*x^17 + 1915*x^16 - 1441*x^15 + 10049*x^14 - 6777*x^13 + 39495*x^12 - 23525*x^11 + 118485*x^10 - 60993*x^9 + 271323*x^8 - 116721*x^7 + 465345*x^6 - 158193*x^5 + 570807*x^4 - 137781*x^3 + 452709*x^2 - 59049*x + 177147)
 
gp: K = bnfinit(x^22 - x^21 + 23*x^20 - 21*x^19 + 261*x^18 - 217*x^17 + 1915*x^16 - 1441*x^15 + 10049*x^14 - 6777*x^13 + 39495*x^12 - 23525*x^11 + 118485*x^10 - 60993*x^9 + 271323*x^8 - 116721*x^7 + 465345*x^6 - 158193*x^5 + 570807*x^4 - 137781*x^3 + 452709*x^2 - 59049*x + 177147, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 23 x^{20} - 21 x^{19} + 261 x^{18} - 217 x^{17} + 1915 x^{16} - 1441 x^{15} + 10049 x^{14} - 6777 x^{13} + 39495 x^{12} - 23525 x^{11} + 118485 x^{10} - 60993 x^{9} + 271323 x^{8} - 116721 x^{7} + 465345 x^{6} - 158193 x^{5} + 570807 x^{4} - 137781 x^{3} + 452709 x^{2} - 59049 x + 177147 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-170726762755621223297063838384459279239=-\,23^{20}\cdot 47\cdot 2116640137\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $54.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 47, 2116640137$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{4}{9} a^{11} - \frac{1}{3} a^{10} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{1}{9} a^{6} - \frac{4}{9} a^{5} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{27} a^{14} - \frac{1}{27} a^{13} - \frac{4}{27} a^{12} + \frac{2}{9} a^{11} - \frac{1}{3} a^{10} - \frac{1}{27} a^{9} - \frac{2}{27} a^{8} - \frac{10}{27} a^{7} + \frac{5}{27} a^{6} - \frac{2}{9} a^{4} - \frac{8}{27} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{81} a^{15} - \frac{1}{81} a^{14} - \frac{4}{81} a^{13} + \frac{2}{27} a^{12} - \frac{4}{9} a^{11} + \frac{26}{81} a^{10} - \frac{29}{81} a^{9} - \frac{37}{81} a^{8} - \frac{22}{81} a^{7} - \frac{1}{3} a^{6} - \frac{2}{27} a^{5} - \frac{35}{81} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{243} a^{16} - \frac{1}{243} a^{15} - \frac{4}{243} a^{14} + \frac{2}{81} a^{13} - \frac{4}{27} a^{12} + \frac{26}{243} a^{11} - \frac{110}{243} a^{10} + \frac{44}{243} a^{9} - \frac{103}{243} a^{8} - \frac{1}{9} a^{7} + \frac{25}{81} a^{6} - \frac{35}{243} a^{5} - \frac{2}{27} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2}$, $\frac{1}{729} a^{17} - \frac{1}{729} a^{16} - \frac{4}{729} a^{15} + \frac{2}{243} a^{14} - \frac{4}{81} a^{13} + \frac{26}{729} a^{12} + \frac{133}{729} a^{11} - \frac{199}{729} a^{10} - \frac{103}{729} a^{9} - \frac{10}{27} a^{8} + \frac{25}{243} a^{7} + \frac{208}{729} a^{6} - \frac{2}{81} a^{5} - \frac{10}{27} a^{4} + \frac{5}{27} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{2187} a^{18} - \frac{1}{2187} a^{17} - \frac{4}{2187} a^{16} + \frac{2}{729} a^{15} - \frac{4}{243} a^{14} + \frac{26}{2187} a^{13} + \frac{133}{2187} a^{12} - \frac{199}{2187} a^{11} - \frac{832}{2187} a^{10} - \frac{37}{81} a^{9} - \frac{218}{729} a^{8} + \frac{937}{2187} a^{7} + \frac{79}{243} a^{6} - \frac{37}{81} a^{5} + \frac{32}{81} a^{4} + \frac{4}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{6561} a^{19} - \frac{1}{6561} a^{18} - \frac{4}{6561} a^{17} + \frac{2}{2187} a^{16} - \frac{4}{729} a^{15} + \frac{26}{6561} a^{14} + \frac{133}{6561} a^{13} - \frac{199}{6561} a^{12} - \frac{832}{6561} a^{11} + \frac{44}{243} a^{10} + \frac{511}{2187} a^{9} + \frac{3124}{6561} a^{8} + \frac{322}{729} a^{7} + \frac{44}{243} a^{6} + \frac{113}{243} a^{5} + \frac{13}{27} a^{4} + \frac{13}{27} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{19683} a^{20} - \frac{1}{19683} a^{19} - \frac{4}{19683} a^{18} + \frac{2}{6561} a^{17} - \frac{4}{2187} a^{16} + \frac{26}{19683} a^{15} + \frac{133}{19683} a^{14} - \frac{199}{19683} a^{13} - \frac{832}{19683} a^{12} + \frac{44}{729} a^{11} + \frac{2698}{6561} a^{10} + \frac{9685}{19683} a^{9} + \frac{1051}{2187} a^{8} + \frac{287}{729} a^{7} + \frac{113}{729} a^{6} + \frac{13}{81} a^{5} + \frac{13}{81} a^{4} - \frac{1}{27} a^{3} - \frac{1}{9} a^{2}$, $\frac{1}{59049} a^{21} - \frac{1}{59049} a^{20} - \frac{4}{59049} a^{19} + \frac{2}{19683} a^{18} - \frac{4}{6561} a^{17} + \frac{26}{59049} a^{16} + \frac{133}{59049} a^{15} - \frac{199}{59049} a^{14} - \frac{832}{59049} a^{13} + \frac{44}{2187} a^{12} + \frac{9259}{19683} a^{11} + \frac{29368}{59049} a^{10} + \frac{1051}{6561} a^{9} - \frac{442}{2187} a^{8} - \frac{616}{2187} a^{7} - \frac{68}{243} a^{6} - \frac{68}{243} a^{5} + \frac{26}{81} a^{4} - \frac{10}{27} a^{3} - \frac{1}{3} a^{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6878}$, which has order $6878$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.82438 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T28:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 22528
The 208 conjugacy class representatives for t22n28 are not computed
Character table for t22n28 is not computed

Intermediate fields

\(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 siblings: data not computed
Degree 44 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ $22$ $22$ $22$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ $22$ $22$ R $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
23Data not computed
$47$$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{47}$$x + 2$$1$$1$$0$Trivial$[\ ]$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.0.1$x^{2} - x + 13$$1$$2$$0$$C_2$$[\ ]^{2}$
2116640137Data not computed