Normalized defining polynomial
\( x^{22} + 201 x^{20} + 15678 x^{18} + 613251 x^{16} + 12981384 x^{14} + 149068836 x^{12} + 883227969 x^{10} + 2478977622 x^{8} + 3362840550 x^{6} + 2090236185 x^{4} + 462885111 x^{2} + 11868849 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-165411067048459529582956967098503557995819954077696=-\,2^{22}\cdot 3^{11}\cdot 67^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $191.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(804=2^{2}\cdot 3\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{804}(1,·)$, $\chi_{804}(193,·)$, $\chi_{804}(493,·)$, $\chi_{804}(265,·)$, $\chi_{804}(779,·)$, $\chi_{804}(397,·)$, $\chi_{804}(527,·)$, $\chi_{804}(563,·)$, $\chi_{804}(611,·)$, $\chi_{804}(277,·)$, $\chi_{804}(407,·)$, $\chi_{804}(25,·)$, $\chi_{804}(539,·)$, $\chi_{804}(349,·)$, $\chi_{804}(803,·)$, $\chi_{804}(625,·)$, $\chi_{804}(455,·)$, $\chi_{804}(685,·)$, $\chi_{804}(241,·)$, $\chi_{804}(179,·)$, $\chi_{804}(311,·)$, $\chi_{804}(119,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{2187} a^{14}$, $\frac{1}{2187} a^{15}$, $\frac{1}{190269} a^{16} + \frac{1}{63423} a^{14} + \frac{13}{21141} a^{12} + \frac{4}{7047} a^{10} - \frac{11}{2349} a^{8} + \frac{11}{783} a^{6} + \frac{5}{261} a^{4} - \frac{7}{87} a^{2} - \frac{5}{29}$, $\frac{1}{190269} a^{17} + \frac{1}{63423} a^{15} + \frac{13}{21141} a^{13} + \frac{4}{7047} a^{11} - \frac{11}{2349} a^{9} + \frac{11}{783} a^{7} + \frac{5}{261} a^{5} - \frac{7}{87} a^{3} - \frac{5}{29} a$, $\frac{1}{2048626323} a^{18} - \frac{574}{227625147} a^{16} + \frac{13399}{227625147} a^{14} - \frac{14164}{25291683} a^{12} - \frac{18677}{25291683} a^{10} - \frac{4927}{936729} a^{8} - \frac{21790}{2810187} a^{6} + \frac{16753}{936729} a^{4} + \frac{16682}{104081} a^{2} + \frac{7629}{104081}$, $\frac{1}{2048626323} a^{19} - \frac{574}{227625147} a^{17} + \frac{13399}{227625147} a^{15} - \frac{14164}{25291683} a^{13} - \frac{18677}{25291683} a^{11} - \frac{4927}{936729} a^{9} - \frac{21790}{2810187} a^{7} + \frac{16753}{936729} a^{5} + \frac{16682}{104081} a^{3} + \frac{7629}{104081} a$, $\frac{1}{695002794010614820344717} a^{20} + \frac{4810300708832}{77222532667846091149413} a^{18} - \frac{178006461792639605}{77222532667846091149413} a^{16} - \frac{2346707019078143843}{25740844222615363716471} a^{14} - \frac{5754079320484931552}{8580281407538454572157} a^{12} + \frac{2913900756043386233}{2860093802512818190719} a^{10} + \frac{33945429182939610}{11769933343674148933} a^{8} + \frac{1230209212891240634}{105929400093067340397} a^{6} + \frac{3036278358663837739}{105929400093067340397} a^{4} - \frac{4557385933435253828}{35309800031022446799} a^{2} - \frac{1757122307640656399}{11769933343674148933}$, $\frac{1}{695002794010614820344717} a^{21} + \frac{4810300708832}{77222532667846091149413} a^{19} - \frac{178006461792639605}{77222532667846091149413} a^{17} - \frac{2346707019078143843}{25740844222615363716471} a^{15} - \frac{5754079320484931552}{8580281407538454572157} a^{13} + \frac{2913900756043386233}{2860093802512818190719} a^{11} + \frac{33945429182939610}{11769933343674148933} a^{9} + \frac{1230209212891240634}{105929400093067340397} a^{7} + \frac{3036278358663837739}{105929400093067340397} a^{5} - \frac{4557385933435253828}{35309800031022446799} a^{3} - \frac{1757122307640656399}{11769933343674148933} a$
Class group and class number
$C_{2}\times C_{11548686}$, which has order $23097372$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338444542.042557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-201}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 67 | Data not computed | ||||||