Normalized defining polynomial
\( x^{22} - 11 x^{21} + 66 x^{20} - 275 x^{19} + 880 x^{18} - 2277 x^{17} + 4917 x^{16} - 9042 x^{15} + 14355 x^{14} - 19855 x^{13} + 24068 x^{12} - 25650 x^{11} + 24035 x^{10} - 19723 x^{9} + 14058 x^{8} - 8646 x^{7} + 4653 x^{6} - 2343 x^{5} + 1210 x^{4} - 605 x^{3} + 231 x^{2} - 44 x + 10 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-158889565336345086255331280912676=-\,2^{2}\cdot 3^{21}\cdot 11^{18}\cdot 683\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 683$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{11} a^{20} - \frac{2}{11} a^{19} + \frac{5}{11} a^{18} - \frac{1}{11} a^{17} - \frac{4}{11} a^{16} - \frac{4}{11} a^{15} + \frac{4}{11} a^{14} - \frac{1}{11} a^{13} - \frac{5}{11} a^{12} - \frac{2}{11} a^{11} - \frac{1}{11} a^{10} + \frac{2}{11} a^{9} - \frac{5}{11} a^{8} + \frac{1}{11} a^{7} + \frac{4}{11} a^{6} + \frac{4}{11} a^{5} - \frac{4}{11} a^{4} + \frac{1}{11} a^{3} + \frac{5}{11} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{68138611850573} a^{21} - \frac{574228017227}{68138611850573} a^{20} + \frac{19135314994481}{68138611850573} a^{19} - \frac{22292282253366}{68138611850573} a^{18} + \frac{4546193691777}{68138611850573} a^{17} + \frac{964386187902}{68138611850573} a^{16} + \frac{31094917540205}{68138611850573} a^{15} + \frac{11788428563044}{68138611850573} a^{14} + \frac{1078763524322}{6194419259143} a^{13} + \frac{1006307071409}{4008153638269} a^{12} + \frac{33910874022969}{68138611850573} a^{11} + \frac{5123173764969}{68138611850573} a^{10} - \frac{28665393728789}{68138611850573} a^{9} + \frac{15601565917249}{68138611850573} a^{8} + \frac{16331769574427}{68138611850573} a^{7} - \frac{29287488668168}{68138611850573} a^{6} - \frac{3322346830706}{68138611850573} a^{5} - \frac{14693128655800}{68138611850573} a^{4} - \frac{76752388343}{364377603479} a^{3} + \frac{9137144683534}{68138611850573} a^{2} + \frac{27694485637535}{68138611850573} a - \frac{12220717302282}{68138611850573}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18825595.7955 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.1.139234453205859.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 683 | Data not computed | ||||||