Properties

Label 22.0.15329357105...3683.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,3^{11}\cdot 89^{21}$
Root discriminant $125.70$
Ramified primes $3, 89$
Class number $51658$ (GRH)
Class group $[51658]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8609149, -2705016, 43810715, -31652698, 50690086, -53427788, 17897782, -10825379, 12889600, -2353532, 3194187, -1132774, 428795, -239894, 65725, -27519, 6826, -1785, 792, -52, 47, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - x^21 + 47*x^20 - 52*x^19 + 792*x^18 - 1785*x^17 + 6826*x^16 - 27519*x^15 + 65725*x^14 - 239894*x^13 + 428795*x^12 - 1132774*x^11 + 3194187*x^10 - 2353532*x^9 + 12889600*x^8 - 10825379*x^7 + 17897782*x^6 - 53427788*x^5 + 50690086*x^4 - 31652698*x^3 + 43810715*x^2 - 2705016*x + 8609149)
 
gp: K = bnfinit(x^22 - x^21 + 47*x^20 - 52*x^19 + 792*x^18 - 1785*x^17 + 6826*x^16 - 27519*x^15 + 65725*x^14 - 239894*x^13 + 428795*x^12 - 1132774*x^11 + 3194187*x^10 - 2353532*x^9 + 12889600*x^8 - 10825379*x^7 + 17897782*x^6 - 53427788*x^5 + 50690086*x^4 - 31652698*x^3 + 43810715*x^2 - 2705016*x + 8609149, 1)
 

Normalized defining polynomial

\( x^{22} - x^{21} + 47 x^{20} - 52 x^{19} + 792 x^{18} - 1785 x^{17} + 6826 x^{16} - 27519 x^{15} + 65725 x^{14} - 239894 x^{13} + 428795 x^{12} - 1132774 x^{11} + 3194187 x^{10} - 2353532 x^{9} + 12889600 x^{8} - 10825379 x^{7} + 17897782 x^{6} - 53427788 x^{5} + 50690086 x^{4} - 31652698 x^{3} + 43810715 x^{2} - 2705016 x + 8609149 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-15329357105602142437812938855438783298481123683=-\,3^{11}\cdot 89^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $125.70$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(267=3\cdot 89\)
Dirichlet character group:    $\lbrace$$\chi_{267}(256,·)$, $\chi_{267}(1,·)$, $\chi_{267}(67,·)$, $\chi_{267}(4,·)$, $\chi_{267}(263,·)$, $\chi_{267}(64,·)$, $\chi_{267}(266,·)$, $\chi_{267}(11,·)$, $\chi_{267}(16,·)$, $\chi_{267}(146,·)$, $\chi_{267}(203,·)$, $\chi_{267}(217,·)$, $\chi_{267}(91,·)$, $\chi_{267}(223,·)$, $\chi_{267}(97,·)$, $\chi_{267}(170,·)$, $\chi_{267}(44,·)$, $\chi_{267}(176,·)$, $\chi_{267}(200,·)$, $\chi_{267}(50,·)$, $\chi_{267}(121,·)$, $\chi_{267}(251,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{101} a^{20} - \frac{11}{101} a^{19} - \frac{27}{101} a^{18} + \frac{20}{101} a^{17} + \frac{5}{101} a^{16} + \frac{40}{101} a^{15} - \frac{49}{101} a^{14} - \frac{49}{101} a^{13} - \frac{14}{101} a^{12} + \frac{47}{101} a^{11} + \frac{35}{101} a^{10} + \frac{33}{101} a^{9} - \frac{42}{101} a^{8} - \frac{26}{101} a^{7} - \frac{11}{101} a^{6} + \frac{49}{101} a^{5} - \frac{5}{101} a^{4} + \frac{23}{101} a^{3} - \frac{13}{101} a^{2} + \frac{34}{101} a - \frac{23}{101}$, $\frac{1}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{21} + \frac{2262998991165935744674468921578330889398020917061649375158172857306191709022735068351026}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{20} - \frac{794890469433170335860140988798399160893899685289122826883654807500223099167953210052640787}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{19} + \frac{333497372431053603343668125465326618236475558285676228576040850527141061924727178455501165}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{18} - \frac{211531682133671640262497901312660011321492778167691316443458178173657770960684109763204731}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{17} + \frac{749783726867902384751003760697894952904333953316086657856024323445632796850330912392091996}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{16} + \frac{465786878325139563486255260317330823949234331342704450363992106845621018755514176108622350}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{15} - \frac{582382304645668058906877339664220582740909467513362571431948795339287938894720883358023255}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{14} - \frac{845274026981708466981641794930067122794388129045894491005046247896957554181649338358891551}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{13} - \frac{747674330140762323639978979105894329885362392468317821265248194832997055670502426130124762}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{12} - \frac{413398247128336539617351228542283299677310742431708778977050962471407107126925196624269538}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{11} + \frac{63880539308850299905682356606852895657663145153257962624487714776253370016704578471299310}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{10} + \frac{250430984985184782176019154839465155448882657065565799102394117275071251329080795004086989}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{9} + \frac{739681684677979141463510146071181109336602877612047552111254244818140089744744573405660766}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{8} + \frac{451523240824477464850167442731422934008471970036828808292356775546303190292497711732426236}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{7} + \frac{151187583499538480623353474160506591678742794273460460280244652103586219052471760389444095}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{6} + \frac{456302249579771926300957917545989164215242149276255339988391123720301119591018700353682999}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{5} - \frac{481940102547779279716951540191507347766505902504300551641169629500425139674598432224831134}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{4} - \frac{198102512093516976507598249350756303416122663877126598176542100941938645603947009679045717}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{3} + \frac{833437615420422522792221799287280143378971461070474543316588394045247879525580929472294656}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{2} + \frac{579502798419730880374580853860941548554847245170048428109318601199655288660206781459605566}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a - \frac{613503759900798124714922165751186662909914184055159068003966147872889527785340721403589132}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{51658}$, which has order $51658$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 866679281.3791491 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-267}) \), 11.11.31181719929966183601.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22$ R $22$ $22$ $22$ $22$ $22$ $22$ ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ $22$ $22$ $22$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
89Data not computed