Normalized defining polynomial
\( x^{22} - x^{21} + 47 x^{20} - 52 x^{19} + 792 x^{18} - 1785 x^{17} + 6826 x^{16} - 27519 x^{15} + 65725 x^{14} - 239894 x^{13} + 428795 x^{12} - 1132774 x^{11} + 3194187 x^{10} - 2353532 x^{9} + 12889600 x^{8} - 10825379 x^{7} + 17897782 x^{6} - 53427788 x^{5} + 50690086 x^{4} - 31652698 x^{3} + 43810715 x^{2} - 2705016 x + 8609149 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15329357105602142437812938855438783298481123683=-\,3^{11}\cdot 89^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(267=3\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{267}(256,·)$, $\chi_{267}(1,·)$, $\chi_{267}(67,·)$, $\chi_{267}(4,·)$, $\chi_{267}(263,·)$, $\chi_{267}(64,·)$, $\chi_{267}(266,·)$, $\chi_{267}(11,·)$, $\chi_{267}(16,·)$, $\chi_{267}(146,·)$, $\chi_{267}(203,·)$, $\chi_{267}(217,·)$, $\chi_{267}(91,·)$, $\chi_{267}(223,·)$, $\chi_{267}(97,·)$, $\chi_{267}(170,·)$, $\chi_{267}(44,·)$, $\chi_{267}(176,·)$, $\chi_{267}(200,·)$, $\chi_{267}(50,·)$, $\chi_{267}(121,·)$, $\chi_{267}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{101} a^{20} - \frac{11}{101} a^{19} - \frac{27}{101} a^{18} + \frac{20}{101} a^{17} + \frac{5}{101} a^{16} + \frac{40}{101} a^{15} - \frac{49}{101} a^{14} - \frac{49}{101} a^{13} - \frac{14}{101} a^{12} + \frac{47}{101} a^{11} + \frac{35}{101} a^{10} + \frac{33}{101} a^{9} - \frac{42}{101} a^{8} - \frac{26}{101} a^{7} - \frac{11}{101} a^{6} + \frac{49}{101} a^{5} - \frac{5}{101} a^{4} + \frac{23}{101} a^{3} - \frac{13}{101} a^{2} + \frac{34}{101} a - \frac{23}{101}$, $\frac{1}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{21} + \frac{2262998991165935744674468921578330889398020917061649375158172857306191709022735068351026}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{20} - \frac{794890469433170335860140988798399160893899685289122826883654807500223099167953210052640787}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{19} + \frac{333497372431053603343668125465326618236475558285676228576040850527141061924727178455501165}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{18} - \frac{211531682133671640262497901312660011321492778167691316443458178173657770960684109763204731}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{17} + \frac{749783726867902384751003760697894952904333953316086657856024323445632796850330912392091996}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{16} + \frac{465786878325139563486255260317330823949234331342704450363992106845621018755514176108622350}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{15} - \frac{582382304645668058906877339664220582740909467513362571431948795339287938894720883358023255}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{14} - \frac{845274026981708466981641794930067122794388129045894491005046247896957554181649338358891551}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{13} - \frac{747674330140762323639978979105894329885362392468317821265248194832997055670502426130124762}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{12} - \frac{413398247128336539617351228542283299677310742431708778977050962471407107126925196624269538}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{11} + \frac{63880539308850299905682356606852895657663145153257962624487714776253370016704578471299310}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{10} + \frac{250430984985184782176019154839465155448882657065565799102394117275071251329080795004086989}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{9} + \frac{739681684677979141463510146071181109336602877612047552111254244818140089744744573405660766}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{8} + \frac{451523240824477464850167442731422934008471970036828808292356775546303190292497711732426236}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{7} + \frac{151187583499538480623353474160506591678742794273460460280244652103586219052471760389444095}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{6} + \frac{456302249579771926300957917545989164215242149276255339988391123720301119591018700353682999}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{5} - \frac{481940102547779279716951540191507347766505902504300551641169629500425139674598432224831134}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{4} - \frac{198102512093516976507598249350756303416122663877126598176542100941938645603947009679045717}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{3} + \frac{833437615420422522792221799287280143378971461070474543316588394045247879525580929472294656}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a^{2} + \frac{579502798419730880374580853860941548554847245170048428109318601199655288660206781459605566}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303} a - \frac{613503759900798124714922165751186662909914184055159068003966147872889527785340721403589132}{1733915904584460205979701102743525951855149611913460601229251202203388170363590573105401303}$
Class group and class number
$C_{51658}$, which has order $51658$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866679281.3791491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-267}) \), 11.11.31181719929966183601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | $22$ | $22$ | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 89 | Data not computed | ||||||