Normalized defining polynomial
\( x^{22} - 4 x^{21} + 18 x^{20} - 48 x^{19} + 125 x^{18} - 249 x^{17} + 478 x^{16} - 766 x^{15} + 1216 x^{14} - 1618 x^{13} + 2242 x^{12} - 2454 x^{11} + 2995 x^{10} - 2616 x^{9} + 2692 x^{8} - 1937 x^{7} + 1684 x^{6} - 1102 x^{5} + 757 x^{4} - 253 x^{3} + 163 x^{2} + 2 x + 1 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 11]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-15257581934366008831157764375\)\(\medspace = -\,5^{4}\cdot 7^{11}\cdot 83^{4}\cdot 127^{4}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $19.10$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 7, 83, 127$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{73} a^{20} + \frac{6}{73} a^{19} + \frac{9}{73} a^{18} - \frac{7}{73} a^{17} + \frac{18}{73} a^{16} - \frac{24}{73} a^{15} + \frac{18}{73} a^{14} - \frac{25}{73} a^{13} + \frac{16}{73} a^{12} - \frac{25}{73} a^{11} + \frac{12}{73} a^{10} - \frac{25}{73} a^{9} + \frac{19}{73} a^{8} + \frac{29}{73} a^{7} - \frac{8}{73} a^{6} - \frac{3}{73} a^{5} + \frac{16}{73} a^{4} - \frac{5}{73} a^{3} - \frac{32}{73} a^{2} - \frac{9}{73} a + \frac{18}{73}$, $\frac{1}{895918078905504527250044171} a^{21} - \frac{1029675052787076496355520}{895918078905504527250044171} a^{20} + \frac{94541541919989199517743271}{895918078905504527250044171} a^{19} + \frac{3279287482768198647187820}{12272850395965815441781427} a^{18} + \frac{362414672188769874323791425}{895918078905504527250044171} a^{17} + \frac{16183252466243642279038080}{895918078905504527250044171} a^{16} + \frac{17652801120192881362439763}{895918078905504527250044171} a^{15} - \frac{304275821545373289596658293}{895918078905504527250044171} a^{14} - \frac{180145817138148519638314129}{895918078905504527250044171} a^{13} + \frac{421288684824846867665786979}{895918078905504527250044171} a^{12} - \frac{247757371849610266358468384}{895918078905504527250044171} a^{11} - \frac{34581351352840682837826610}{895918078905504527250044171} a^{10} + \frac{101403666819142800129172877}{895918078905504527250044171} a^{9} - \frac{70087196227760311472984377}{895918078905504527250044171} a^{8} + \frac{104871663917880612291542157}{895918078905504527250044171} a^{7} - \frac{7743340996765517892039431}{24214002132581203439190383} a^{6} - \frac{77467235939688095304313341}{895918078905504527250044171} a^{5} + \frac{149983118175567548776935831}{895918078905504527250044171} a^{4} - \frac{442206669760071561463669896}{895918078905504527250044171} a^{3} + \frac{119251387444657133110468054}{895918078905504527250044171} a^{2} + \frac{201870078523537954129136765}{895918078905504527250044171} a - \frac{185906182445383769053440881}{895918078905504527250044171}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 69206.6233764 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 39916800 |
The 62 conjugacy class representatives for t22n46 are not computed |
Character table for t22n46 is not computed |
Intermediate fields
\(\Q(\sqrt{-7}) \), 11.3.136113034225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | R | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
7 | Data not computed | ||||||
$83$ | 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
83.6.4.1 | $x^{6} + 415 x^{3} + 55112$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
83.10.0.1 | $x^{10} - x + 13$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
127 | Data not computed |