Properties

Label 22.0.152...375.1
Degree $22$
Signature $[0, 11]$
Discriminant $-1.526\times 10^{28}$
Root discriminant \(19.10\)
Ramified primes $5,7,83,127$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2\times A_{11}$ (as 22T46)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 4*x^21 + 18*x^20 - 48*x^19 + 125*x^18 - 249*x^17 + 478*x^16 - 766*x^15 + 1216*x^14 - 1618*x^13 + 2242*x^12 - 2454*x^11 + 2995*x^10 - 2616*x^9 + 2692*x^8 - 1937*x^7 + 1684*x^6 - 1102*x^5 + 757*x^4 - 253*x^3 + 163*x^2 + 2*x + 1)
 
gp: K = bnfinit(y^22 - 4*y^21 + 18*y^20 - 48*y^19 + 125*y^18 - 249*y^17 + 478*y^16 - 766*y^15 + 1216*y^14 - 1618*y^13 + 2242*y^12 - 2454*y^11 + 2995*y^10 - 2616*y^9 + 2692*y^8 - 1937*y^7 + 1684*y^6 - 1102*y^5 + 757*y^4 - 253*y^3 + 163*y^2 + 2*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 4*x^21 + 18*x^20 - 48*x^19 + 125*x^18 - 249*x^17 + 478*x^16 - 766*x^15 + 1216*x^14 - 1618*x^13 + 2242*x^12 - 2454*x^11 + 2995*x^10 - 2616*x^9 + 2692*x^8 - 1937*x^7 + 1684*x^6 - 1102*x^5 + 757*x^4 - 253*x^3 + 163*x^2 + 2*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 4*x^21 + 18*x^20 - 48*x^19 + 125*x^18 - 249*x^17 + 478*x^16 - 766*x^15 + 1216*x^14 - 1618*x^13 + 2242*x^12 - 2454*x^11 + 2995*x^10 - 2616*x^9 + 2692*x^8 - 1937*x^7 + 1684*x^6 - 1102*x^5 + 757*x^4 - 253*x^3 + 163*x^2 + 2*x + 1)
 

\( x^{22} - 4 x^{21} + 18 x^{20} - 48 x^{19} + 125 x^{18} - 249 x^{17} + 478 x^{16} - 766 x^{15} + 1216 x^{14} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 11]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-15257581934366008831157764375\) \(\medspace = -\,5^{4}\cdot 7^{11}\cdot 83^{4}\cdot 127^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(19.10\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}7^{1/2}83^{2/3}127^{2/3}\approx 2844.1679033165196$
Ramified primes:   \(5\), \(7\), \(83\), \(127\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{73}a^{20}+\frac{6}{73}a^{19}+\frac{9}{73}a^{18}-\frac{7}{73}a^{17}+\frac{18}{73}a^{16}-\frac{24}{73}a^{15}+\frac{18}{73}a^{14}-\frac{25}{73}a^{13}+\frac{16}{73}a^{12}-\frac{25}{73}a^{11}+\frac{12}{73}a^{10}-\frac{25}{73}a^{9}+\frac{19}{73}a^{8}+\frac{29}{73}a^{7}-\frac{8}{73}a^{6}-\frac{3}{73}a^{5}+\frac{16}{73}a^{4}-\frac{5}{73}a^{3}-\frac{32}{73}a^{2}-\frac{9}{73}a+\frac{18}{73}$, $\frac{1}{89\!\cdots\!71}a^{21}-\frac{10\!\cdots\!20}{89\!\cdots\!71}a^{20}+\frac{94\!\cdots\!71}{89\!\cdots\!71}a^{19}+\frac{32\!\cdots\!20}{12\!\cdots\!27}a^{18}+\frac{36\!\cdots\!25}{89\!\cdots\!71}a^{17}+\frac{16\!\cdots\!80}{89\!\cdots\!71}a^{16}+\frac{17\!\cdots\!63}{89\!\cdots\!71}a^{15}-\frac{30\!\cdots\!93}{89\!\cdots\!71}a^{14}-\frac{18\!\cdots\!29}{89\!\cdots\!71}a^{13}+\frac{42\!\cdots\!79}{89\!\cdots\!71}a^{12}-\frac{24\!\cdots\!84}{89\!\cdots\!71}a^{11}-\frac{34\!\cdots\!10}{89\!\cdots\!71}a^{10}+\frac{10\!\cdots\!77}{89\!\cdots\!71}a^{9}-\frac{70\!\cdots\!77}{89\!\cdots\!71}a^{8}+\frac{10\!\cdots\!57}{89\!\cdots\!71}a^{7}-\frac{77\!\cdots\!31}{24\!\cdots\!83}a^{6}-\frac{77\!\cdots\!41}{89\!\cdots\!71}a^{5}+\frac{14\!\cdots\!31}{89\!\cdots\!71}a^{4}-\frac{44\!\cdots\!96}{89\!\cdots\!71}a^{3}+\frac{11\!\cdots\!54}{89\!\cdots\!71}a^{2}+\frac{20\!\cdots\!65}{89\!\cdots\!71}a-\frac{18\!\cdots\!81}{89\!\cdots\!71}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{68\!\cdots\!95}{89\!\cdots\!71}a^{21}-\frac{28\!\cdots\!12}{89\!\cdots\!71}a^{20}+\frac{12\!\cdots\!70}{89\!\cdots\!71}a^{19}-\frac{34\!\cdots\!74}{89\!\cdots\!71}a^{18}+\frac{89\!\cdots\!02}{89\!\cdots\!71}a^{17}-\frac{17\!\cdots\!69}{89\!\cdots\!71}a^{16}+\frac{34\!\cdots\!67}{89\!\cdots\!71}a^{15}-\frac{55\!\cdots\!93}{89\!\cdots\!71}a^{14}+\frac{88\!\cdots\!24}{89\!\cdots\!71}a^{13}-\frac{11\!\cdots\!68}{89\!\cdots\!71}a^{12}+\frac{16\!\cdots\!70}{89\!\cdots\!71}a^{11}-\frac{18\!\cdots\!37}{89\!\cdots\!71}a^{10}+\frac{22\!\cdots\!20}{89\!\cdots\!71}a^{9}-\frac{20\!\cdots\!78}{89\!\cdots\!71}a^{8}+\frac{20\!\cdots\!39}{89\!\cdots\!71}a^{7}-\frac{41\!\cdots\!87}{24\!\cdots\!83}a^{6}+\frac{12\!\cdots\!00}{89\!\cdots\!71}a^{5}-\frac{86\!\cdots\!77}{89\!\cdots\!71}a^{4}+\frac{58\!\cdots\!31}{89\!\cdots\!71}a^{3}-\frac{22\!\cdots\!85}{89\!\cdots\!71}a^{2}+\frac{12\!\cdots\!08}{89\!\cdots\!71}a-\frac{54\!\cdots\!40}{89\!\cdots\!71}$, $\frac{15\!\cdots\!47}{89\!\cdots\!71}a^{21}-\frac{70\!\cdots\!97}{89\!\cdots\!71}a^{20}+\frac{32\!\cdots\!11}{89\!\cdots\!71}a^{19}-\frac{92\!\cdots\!23}{89\!\cdots\!71}a^{18}+\frac{33\!\cdots\!63}{12\!\cdots\!27}a^{17}-\frac{51\!\cdots\!00}{89\!\cdots\!71}a^{16}+\frac{10\!\cdots\!77}{89\!\cdots\!71}a^{15}-\frac{17\!\cdots\!93}{89\!\cdots\!71}a^{14}+\frac{27\!\cdots\!03}{89\!\cdots\!71}a^{13}-\frac{38\!\cdots\!56}{89\!\cdots\!71}a^{12}+\frac{53\!\cdots\!37}{89\!\cdots\!71}a^{11}-\frac{63\!\cdots\!54}{89\!\cdots\!71}a^{10}+\frac{76\!\cdots\!56}{89\!\cdots\!71}a^{9}-\frac{73\!\cdots\!29}{89\!\cdots\!71}a^{8}+\frac{74\!\cdots\!24}{89\!\cdots\!71}a^{7}-\frac{15\!\cdots\!35}{24\!\cdots\!83}a^{6}+\frac{50\!\cdots\!15}{89\!\cdots\!71}a^{5}-\frac{33\!\cdots\!80}{89\!\cdots\!71}a^{4}+\frac{24\!\cdots\!49}{89\!\cdots\!71}a^{3}-\frac{10\!\cdots\!26}{89\!\cdots\!71}a^{2}+\frac{52\!\cdots\!91}{89\!\cdots\!71}a-\frac{71\!\cdots\!83}{89\!\cdots\!71}$, $\frac{20\!\cdots\!38}{89\!\cdots\!71}a^{21}-\frac{21\!\cdots\!70}{89\!\cdots\!71}a^{20}+\frac{94\!\cdots\!32}{89\!\cdots\!71}a^{19}-\frac{35\!\cdots\!75}{89\!\cdots\!71}a^{18}+\frac{96\!\cdots\!49}{89\!\cdots\!71}a^{17}-\frac{23\!\cdots\!64}{89\!\cdots\!71}a^{16}+\frac{47\!\cdots\!80}{89\!\cdots\!71}a^{15}-\frac{86\!\cdots\!12}{89\!\cdots\!71}a^{14}+\frac{14\!\cdots\!02}{89\!\cdots\!71}a^{13}-\frac{21\!\cdots\!08}{89\!\cdots\!71}a^{12}+\frac{28\!\cdots\!62}{89\!\cdots\!71}a^{11}-\frac{37\!\cdots\!32}{89\!\cdots\!71}a^{10}+\frac{42\!\cdots\!40}{89\!\cdots\!71}a^{9}-\frac{47\!\cdots\!14}{89\!\cdots\!71}a^{8}+\frac{44\!\cdots\!97}{89\!\cdots\!71}a^{7}-\frac{10\!\cdots\!19}{24\!\cdots\!83}a^{6}+\frac{30\!\cdots\!77}{89\!\cdots\!71}a^{5}-\frac{23\!\cdots\!28}{89\!\cdots\!71}a^{4}+\frac{16\!\cdots\!71}{89\!\cdots\!71}a^{3}-\frac{10\!\cdots\!90}{89\!\cdots\!71}a^{2}+\frac{38\!\cdots\!80}{89\!\cdots\!71}a-\frac{13\!\cdots\!19}{89\!\cdots\!71}$, $\frac{63\!\cdots\!79}{89\!\cdots\!71}a^{21}-\frac{28\!\cdots\!35}{89\!\cdots\!71}a^{20}+\frac{13\!\cdots\!77}{89\!\cdots\!71}a^{19}-\frac{39\!\cdots\!24}{89\!\cdots\!71}a^{18}+\frac{10\!\cdots\!47}{89\!\cdots\!71}a^{17}-\frac{22\!\cdots\!32}{89\!\cdots\!71}a^{16}+\frac{45\!\cdots\!93}{89\!\cdots\!71}a^{15}-\frac{77\!\cdots\!08}{89\!\cdots\!71}a^{14}+\frac{12\!\cdots\!11}{89\!\cdots\!71}a^{13}-\frac{17\!\cdots\!76}{89\!\cdots\!71}a^{12}+\frac{24\!\cdots\!09}{89\!\cdots\!71}a^{11}-\frac{28\!\cdots\!55}{89\!\cdots\!71}a^{10}+\frac{35\!\cdots\!96}{89\!\cdots\!71}a^{9}-\frac{32\!\cdots\!25}{89\!\cdots\!71}a^{8}+\frac{34\!\cdots\!81}{89\!\cdots\!71}a^{7}-\frac{65\!\cdots\!20}{24\!\cdots\!83}a^{6}+\frac{23\!\cdots\!03}{89\!\cdots\!71}a^{5}-\frac{12\!\cdots\!34}{89\!\cdots\!71}a^{4}+\frac{11\!\cdots\!13}{89\!\cdots\!71}a^{3}-\frac{38\!\cdots\!14}{89\!\cdots\!71}a^{2}+\frac{24\!\cdots\!22}{89\!\cdots\!71}a+\frac{61\!\cdots\!76}{89\!\cdots\!71}$, $\frac{84\!\cdots\!57}{89\!\cdots\!71}a^{21}-\frac{42\!\cdots\!67}{89\!\cdots\!71}a^{20}+\frac{18\!\cdots\!94}{89\!\cdots\!71}a^{19}-\frac{56\!\cdots\!03}{89\!\cdots\!71}a^{18}+\frac{15\!\cdots\!89}{89\!\cdots\!71}a^{17}-\frac{32\!\cdots\!76}{89\!\cdots\!71}a^{16}+\frac{63\!\cdots\!53}{89\!\cdots\!71}a^{15}-\frac{11\!\cdots\!64}{89\!\cdots\!71}a^{14}+\frac{17\!\cdots\!47}{89\!\cdots\!71}a^{13}-\frac{25\!\cdots\!62}{89\!\cdots\!71}a^{12}+\frac{34\!\cdots\!30}{89\!\cdots\!71}a^{11}-\frac{42\!\cdots\!05}{89\!\cdots\!71}a^{10}+\frac{49\!\cdots\!91}{89\!\cdots\!71}a^{9}-\frac{51\!\cdots\!75}{89\!\cdots\!71}a^{8}+\frac{48\!\cdots\!39}{89\!\cdots\!71}a^{7}-\frac{11\!\cdots\!02}{24\!\cdots\!83}a^{6}+\frac{33\!\cdots\!00}{89\!\cdots\!71}a^{5}-\frac{26\!\cdots\!32}{89\!\cdots\!71}a^{4}+\frac{17\!\cdots\!05}{89\!\cdots\!71}a^{3}-\frac{10\!\cdots\!39}{89\!\cdots\!71}a^{2}+\frac{39\!\cdots\!12}{89\!\cdots\!71}a-\frac{60\!\cdots\!00}{89\!\cdots\!71}$, $\frac{26\!\cdots\!95}{89\!\cdots\!71}a^{21}-\frac{97\!\cdots\!45}{89\!\cdots\!71}a^{20}+\frac{42\!\cdots\!39}{89\!\cdots\!71}a^{19}-\frac{10\!\cdots\!78}{89\!\cdots\!71}a^{18}+\frac{26\!\cdots\!10}{89\!\cdots\!71}a^{17}-\frac{48\!\cdots\!80}{89\!\cdots\!71}a^{16}+\frac{89\!\cdots\!79}{89\!\cdots\!71}a^{15}-\frac{13\!\cdots\!13}{89\!\cdots\!71}a^{14}+\frac{20\!\cdots\!19}{89\!\cdots\!71}a^{13}-\frac{24\!\cdots\!51}{89\!\cdots\!71}a^{12}+\frac{33\!\cdots\!37}{89\!\cdots\!71}a^{11}-\frac{30\!\cdots\!47}{89\!\cdots\!71}a^{10}+\frac{38\!\cdots\!13}{89\!\cdots\!71}a^{9}-\frac{23\!\cdots\!67}{89\!\cdots\!71}a^{8}+\frac{25\!\cdots\!06}{89\!\cdots\!71}a^{7}-\frac{28\!\cdots\!70}{24\!\cdots\!83}a^{6}+\frac{10\!\cdots\!90}{89\!\cdots\!71}a^{5}-\frac{42\!\cdots\!00}{89\!\cdots\!71}a^{4}+\frac{16\!\cdots\!80}{89\!\cdots\!71}a^{3}+\frac{52\!\cdots\!47}{89\!\cdots\!71}a^{2}+\frac{99\!\cdots\!25}{89\!\cdots\!71}a+\frac{72\!\cdots\!04}{89\!\cdots\!71}$, $\frac{10\!\cdots\!36}{89\!\cdots\!71}a^{21}-\frac{18\!\cdots\!40}{89\!\cdots\!71}a^{20}+\frac{71\!\cdots\!89}{89\!\cdots\!71}a^{19}-\frac{31\!\cdots\!28}{89\!\cdots\!71}a^{18}+\frac{83\!\cdots\!80}{89\!\cdots\!71}a^{17}-\frac{21\!\cdots\!22}{89\!\cdots\!71}a^{16}+\frac{41\!\cdots\!45}{89\!\cdots\!71}a^{15}-\frac{78\!\cdots\!36}{89\!\cdots\!71}a^{14}+\frac{12\!\cdots\!17}{89\!\cdots\!71}a^{13}-\frac{19\!\cdots\!75}{89\!\cdots\!71}a^{12}+\frac{24\!\cdots\!14}{89\!\cdots\!71}a^{11}-\frac{34\!\cdots\!88}{89\!\cdots\!71}a^{10}+\frac{35\!\cdots\!36}{89\!\cdots\!71}a^{9}-\frac{43\!\cdots\!08}{89\!\cdots\!71}a^{8}+\frac{35\!\cdots\!57}{89\!\cdots\!71}a^{7}-\frac{97\!\cdots\!70}{24\!\cdots\!83}a^{6}+\frac{22\!\cdots\!66}{89\!\cdots\!71}a^{5}-\frac{20\!\cdots\!15}{89\!\cdots\!71}a^{4}+\frac{12\!\cdots\!42}{89\!\cdots\!71}a^{3}-\frac{73\!\cdots\!96}{89\!\cdots\!71}a^{2}+\frac{11\!\cdots\!58}{89\!\cdots\!71}a-\frac{61\!\cdots\!51}{89\!\cdots\!71}$, $\frac{17\!\cdots\!67}{89\!\cdots\!71}a^{21}-\frac{80\!\cdots\!31}{89\!\cdots\!71}a^{20}+\frac{35\!\cdots\!96}{89\!\cdots\!71}a^{19}-\frac{10\!\cdots\!92}{89\!\cdots\!71}a^{18}+\frac{26\!\cdots\!89}{89\!\cdots\!71}a^{17}-\frac{55\!\cdots\!88}{89\!\cdots\!71}a^{16}+\frac{10\!\cdots\!80}{89\!\cdots\!71}a^{15}-\frac{17\!\cdots\!05}{89\!\cdots\!71}a^{14}+\frac{27\!\cdots\!17}{89\!\cdots\!71}a^{13}-\frac{37\!\cdots\!33}{89\!\cdots\!71}a^{12}+\frac{51\!\cdots\!90}{89\!\cdots\!71}a^{11}-\frac{58\!\cdots\!07}{89\!\cdots\!71}a^{10}+\frac{67\!\cdots\!11}{89\!\cdots\!71}a^{9}-\frac{64\!\cdots\!33}{89\!\cdots\!71}a^{8}+\frac{60\!\cdots\!29}{89\!\cdots\!71}a^{7}-\frac{12\!\cdots\!30}{24\!\cdots\!83}a^{6}+\frac{36\!\cdots\!77}{89\!\cdots\!71}a^{5}-\frac{24\!\cdots\!51}{89\!\cdots\!71}a^{4}+\frac{16\!\cdots\!32}{89\!\cdots\!71}a^{3}-\frac{54\!\cdots\!83}{89\!\cdots\!71}a^{2}+\frac{13\!\cdots\!44}{89\!\cdots\!71}a+\frac{41\!\cdots\!00}{89\!\cdots\!71}$, $\frac{11\!\cdots\!56}{89\!\cdots\!71}a^{21}-\frac{46\!\cdots\!19}{89\!\cdots\!71}a^{20}+\frac{20\!\cdots\!88}{89\!\cdots\!71}a^{19}-\frac{55\!\cdots\!33}{89\!\cdots\!71}a^{18}+\frac{14\!\cdots\!41}{89\!\cdots\!71}a^{17}-\frac{28\!\cdots\!26}{89\!\cdots\!71}a^{16}+\frac{54\!\cdots\!79}{89\!\cdots\!71}a^{15}-\frac{87\!\cdots\!64}{89\!\cdots\!71}a^{14}+\frac{13\!\cdots\!57}{89\!\cdots\!71}a^{13}-\frac{18\!\cdots\!37}{89\!\cdots\!71}a^{12}+\frac{25\!\cdots\!74}{89\!\cdots\!71}a^{11}-\frac{27\!\cdots\!35}{89\!\cdots\!71}a^{10}+\frac{33\!\cdots\!60}{89\!\cdots\!71}a^{9}-\frac{29\!\cdots\!90}{89\!\cdots\!71}a^{8}+\frac{30\!\cdots\!74}{89\!\cdots\!71}a^{7}-\frac{57\!\cdots\!20}{24\!\cdots\!83}a^{6}+\frac{18\!\cdots\!14}{89\!\cdots\!71}a^{5}-\frac{12\!\cdots\!17}{89\!\cdots\!71}a^{4}+\frac{83\!\cdots\!04}{89\!\cdots\!71}a^{3}-\frac{26\!\cdots\!89}{89\!\cdots\!71}a^{2}+\frac{17\!\cdots\!18}{89\!\cdots\!71}a+\frac{44\!\cdots\!46}{89\!\cdots\!71}$, $\frac{65\!\cdots\!98}{89\!\cdots\!71}a^{21}-\frac{32\!\cdots\!75}{89\!\cdots\!71}a^{20}+\frac{14\!\cdots\!73}{89\!\cdots\!71}a^{19}-\frac{43\!\cdots\!49}{89\!\cdots\!71}a^{18}+\frac{11\!\cdots\!18}{89\!\cdots\!71}a^{17}-\frac{25\!\cdots\!07}{89\!\cdots\!71}a^{16}+\frac{49\!\cdots\!10}{89\!\cdots\!71}a^{15}-\frac{86\!\cdots\!51}{89\!\cdots\!71}a^{14}+\frac{13\!\cdots\!83}{89\!\cdots\!71}a^{13}-\frac{20\!\cdots\!35}{89\!\cdots\!71}a^{12}+\frac{27\!\cdots\!60}{89\!\cdots\!71}a^{11}-\frac{34\!\cdots\!64}{89\!\cdots\!71}a^{10}+\frac{40\!\cdots\!12}{89\!\cdots\!71}a^{9}-\frac{41\!\cdots\!69}{89\!\cdots\!71}a^{8}+\frac{41\!\cdots\!19}{89\!\cdots\!71}a^{7}-\frac{95\!\cdots\!05}{24\!\cdots\!83}a^{6}+\frac{29\!\cdots\!59}{89\!\cdots\!71}a^{5}-\frac{20\!\cdots\!32}{89\!\cdots\!71}a^{4}+\frac{21\!\cdots\!81}{12\!\cdots\!27}a^{3}-\frac{74\!\cdots\!72}{89\!\cdots\!71}a^{2}+\frac{43\!\cdots\!48}{89\!\cdots\!71}a-\frac{46\!\cdots\!97}{89\!\cdots\!71}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 69206.6233764 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{11}\cdot 69206.6233764 \cdot 1}{2\cdot\sqrt{15257581934366008831157764375}}\cr\approx \mathstrut & 0.168792583789 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 4*x^21 + 18*x^20 - 48*x^19 + 125*x^18 - 249*x^17 + 478*x^16 - 766*x^15 + 1216*x^14 - 1618*x^13 + 2242*x^12 - 2454*x^11 + 2995*x^10 - 2616*x^9 + 2692*x^8 - 1937*x^7 + 1684*x^6 - 1102*x^5 + 757*x^4 - 253*x^3 + 163*x^2 + 2*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 4*x^21 + 18*x^20 - 48*x^19 + 125*x^18 - 249*x^17 + 478*x^16 - 766*x^15 + 1216*x^14 - 1618*x^13 + 2242*x^12 - 2454*x^11 + 2995*x^10 - 2616*x^9 + 2692*x^8 - 1937*x^7 + 1684*x^6 - 1102*x^5 + 757*x^4 - 253*x^3 + 163*x^2 + 2*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 4*x^21 + 18*x^20 - 48*x^19 + 125*x^18 - 249*x^17 + 478*x^16 - 766*x^15 + 1216*x^14 - 1618*x^13 + 2242*x^12 - 2454*x^11 + 2995*x^10 - 2616*x^9 + 2692*x^8 - 1937*x^7 + 1684*x^6 - 1102*x^5 + 757*x^4 - 253*x^3 + 163*x^2 + 2*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 4*x^21 + 18*x^20 - 48*x^19 + 125*x^18 - 249*x^17 + 478*x^16 - 766*x^15 + 1216*x^14 - 1618*x^13 + 2242*x^12 - 2454*x^11 + 2995*x^10 - 2616*x^9 + 2692*x^8 - 1937*x^7 + 1684*x^6 - 1102*x^5 + 757*x^4 - 253*x^3 + 163*x^2 + 2*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_{11}$ (as 22T46):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 39916800
The 62 conjugacy class representatives for $C_2\times A_{11}$
Character table for $C_2\times A_{11}$

Intermediate fields

\(\Q(\sqrt{-7}) \), 11.3.136113034225.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.11.0.1}{11} }^{2}$ $22$ R R ${\href{/padicField/11.11.0.1}{11} }^{2}$ $22$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.11.0.1}{11} }^{2}$ ${\href{/padicField/29.11.0.1}{11} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.11.0.1}{11} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 20 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.6.0.1$x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
5.6.0.1$x^{6} + x^{4} + 4 x^{3} + x^{2} + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.14.7.1$x^{14} + 49 x^{12} + 1029 x^{10} + 12017 x^{8} + 8 x^{7} + 82859 x^{6} - 1176 x^{5} + 352947 x^{4} + 13720 x^{3} + 881203 x^{2} - 19160 x + 794999$$2$$7$$7$$C_{14}$$[\ ]_{2}^{7}$
\(83\) Copy content Toggle raw display 83.2.0.1$x^{2} + 82 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} + 82 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.2.0.1$x^{2} + 82 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
83.6.4.1$x^{6} + 246 x^{5} + 20178 x^{4} + 552518 x^{3} + 60774 x^{2} + 1674264 x + 45729605$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
83.10.0.1$x^{10} + 7 x^{5} + 73 x^{3} + 53 x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
\(127\) Copy content Toggle raw display $\Q_{127}$$x + 124$$1$$1$$0$Trivial$[\ ]$
$\Q_{127}$$x + 124$$1$$1$$0$Trivial$[\ ]$
127.3.2.1$x^{3} + 127$$3$$1$$2$$C_3$$[\ ]_{3}$
127.3.2.1$x^{3} + 127$$3$$1$$2$$C_3$$[\ ]_{3}$
127.7.0.1$x^{7} + 15 x + 124$$1$$7$$0$$C_7$$[\ ]^{7}$
127.7.0.1$x^{7} + 15 x + 124$$1$$7$$0$$C_7$$[\ ]^{7}$