Properties

Label 22.0.14844328957...9375.1
Degree $22$
Signature $[0, 11]$
Discriminant $-\,3^{11}\cdot 5^{11}\cdot 23^{20}$
Root discriminant $66.99$
Ramified primes $3, 5, 23$
Class number $91498$ (GRH)
Class group $[91498]$ (GRH)
Galois group $C_{22}$ (as 22T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![155003209, -122653854, 214516775, -149610555, 148564990, -91292990, 67020055, -36444035, 21744445, -10499975, 5312470, -2278940, 996721, -378050, 143444, -47572, 15557, -4387, 1195, -273, 59, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 9*x^21 + 59*x^20 - 273*x^19 + 1195*x^18 - 4387*x^17 + 15557*x^16 - 47572*x^15 + 143444*x^14 - 378050*x^13 + 996721*x^12 - 2278940*x^11 + 5312470*x^10 - 10499975*x^9 + 21744445*x^8 - 36444035*x^7 + 67020055*x^6 - 91292990*x^5 + 148564990*x^4 - 149610555*x^3 + 214516775*x^2 - 122653854*x + 155003209)
 
gp: K = bnfinit(x^22 - 9*x^21 + 59*x^20 - 273*x^19 + 1195*x^18 - 4387*x^17 + 15557*x^16 - 47572*x^15 + 143444*x^14 - 378050*x^13 + 996721*x^12 - 2278940*x^11 + 5312470*x^10 - 10499975*x^9 + 21744445*x^8 - 36444035*x^7 + 67020055*x^6 - 91292990*x^5 + 148564990*x^4 - 149610555*x^3 + 214516775*x^2 - 122653854*x + 155003209, 1)
 

Normalized defining polynomial

\( x^{22} - 9 x^{21} + 59 x^{20} - 273 x^{19} + 1195 x^{18} - 4387 x^{17} + 15557 x^{16} - 47572 x^{15} + 143444 x^{14} - 378050 x^{13} + 996721 x^{12} - 2278940 x^{11} + 5312470 x^{10} - 10499975 x^{9} + 21744445 x^{8} - 36444035 x^{7} + 67020055 x^{6} - 91292990 x^{5} + 148564990 x^{4} - 149610555 x^{3} + 214516775 x^{2} - 122653854 x + 155003209 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-14844328957686912445797815584548193359375=-\,3^{11}\cdot 5^{11}\cdot 23^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $66.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(345=3\cdot 5\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{345}(256,·)$, $\chi_{345}(1,·)$, $\chi_{345}(196,·)$, $\chi_{345}(331,·)$, $\chi_{345}(269,·)$, $\chi_{345}(271,·)$, $\chi_{345}(16,·)$, $\chi_{345}(209,·)$, $\chi_{345}(211,·)$, $\chi_{345}(151,·)$, $\chi_{345}(284,·)$, $\chi_{345}(29,·)$, $\chi_{345}(31,·)$, $\chi_{345}(164,·)$, $\chi_{345}(104,·)$, $\chi_{345}(301,·)$, $\chi_{345}(239,·)$, $\chi_{345}(179,·)$, $\chi_{345}(119,·)$, $\chi_{345}(121,·)$, $\chi_{345}(59,·)$, $\chi_{345}(254,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{2}{47} a^{19} - \frac{18}{47} a^{18} - \frac{11}{47} a^{17} - \frac{11}{47} a^{16} + \frac{12}{47} a^{15} - \frac{1}{47} a^{14} + \frac{15}{47} a^{13} - \frac{18}{47} a^{12} - \frac{20}{47} a^{11} + \frac{3}{47} a^{10} - \frac{12}{47} a^{9} + \frac{7}{47} a^{8} + \frac{9}{47} a^{7} + \frac{6}{47} a^{6} + \frac{21}{47} a^{5} - \frac{5}{47} a^{4} - \frac{21}{47} a^{3} - \frac{7}{47} a^{2} + \frac{14}{47} a - \frac{13}{47}$, $\frac{1}{220759451457059865401733349878002586455028708159137325679417421458757} a^{21} - \frac{768146294021795421607585869477261846742708606827165953281985842522}{220759451457059865401733349878002586455028708159137325679417421458757} a^{20} - \frac{76751661336825641458301679458205487264024669860343596961524416771918}{220759451457059865401733349878002586455028708159137325679417421458757} a^{19} + \frac{54851261992514987139244105605437028380800507593052834581540717964107}{220759451457059865401733349878002586455028708159137325679417421458757} a^{18} - \frac{69158044908569245008915814238522083120149483856242051865439340434083}{220759451457059865401733349878002586455028708159137325679417421458757} a^{17} + \frac{44299065884824659419507505253206872163392715887404295783135246954421}{220759451457059865401733349878002586455028708159137325679417421458757} a^{16} + \frac{108153651313471445993817477048380292374708886155039274988238517227321}{220759451457059865401733349878002586455028708159137325679417421458757} a^{15} - \frac{77998975832635461026296351970532001639065995121805558738815123369127}{220759451457059865401733349878002586455028708159137325679417421458757} a^{14} + \frac{91442462536094201166302423611002886286838767803304869328529815376948}{220759451457059865401733349878002586455028708159137325679417421458757} a^{13} + \frac{85335211911212638219784189068503089030646414813940118993905202003197}{220759451457059865401733349878002586455028708159137325679417421458757} a^{12} - \frac{64417172401983380016956246277692809455047643620405974285045493383144}{220759451457059865401733349878002586455028708159137325679417421458757} a^{11} + \frac{54228862664889775068275243571918924381988148253431178955903815698584}{220759451457059865401733349878002586455028708159137325679417421458757} a^{10} - \frac{46442563837049991981257319072521025476098908423912450001148416659}{220759451457059865401733349878002586455028708159137325679417421458757} a^{9} - \frac{61936914873908278581720059267634614821550358542939511460037302597419}{220759451457059865401733349878002586455028708159137325679417421458757} a^{8} + \frac{97875303504589317720591866492025072336691040789559803795323211274900}{220759451457059865401733349878002586455028708159137325679417421458757} a^{7} - \frac{64059524833695797039885255158642635191304694106193898847818826713153}{220759451457059865401733349878002586455028708159137325679417421458757} a^{6} + \frac{77077788848503231549721166453386216697829379374929619157814415460434}{220759451457059865401733349878002586455028708159137325679417421458757} a^{5} + \frac{88746053339423870476417796123197413821711321114770699893575134487039}{220759451457059865401733349878002586455028708159137325679417421458757} a^{4} - \frac{86279378965322686310773972359463337462438411870735898168238267166797}{220759451457059865401733349878002586455028708159137325679417421458757} a^{3} - \frac{48205223376687886721675938271308653468524317383610380967653274573221}{220759451457059865401733349878002586455028708159137325679417421458757} a^{2} - \frac{70389403703225790004782463145012179026986994202801054522348679197591}{220759451457059865401733349878002586455028708159137325679417421458757} a + \frac{69209418321451723518985339945042030256757284596854285144655656742208}{220759451457059865401733349878002586455028708159137325679417421458757}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{91498}$, which has order $91498$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1038656.82438 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{22}$ (as 22T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 22
The 22 conjugacy class representatives for $C_{22}$
Character table for $C_{22}$ is not computed

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ R R $22$ $22$ $22$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R $22$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ $22$ $22$ $22$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
$23$23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$
23.11.10.10$x^{11} - 23$$11$$1$$10$$C_{11}$$[\ ]_{11}$