Normalized defining polynomial
\( x^{22} + 61 x^{20} + 1466 x^{18} + 18767 x^{16} + 142812 x^{14} + 672568 x^{12} + 1953909 x^{10} + 3334358 x^{8} + 2944762 x^{6} + 969293 x^{4} + 57019 x^{2} + 841 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13936571865431899047915848208912554030792704=-\,2^{22}\cdot 67^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(268=2^{2}\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{268}(1,·)$, $\chi_{268}(131,·)$, $\chi_{268}(263,·)$, $\chi_{268}(9,·)$, $\chi_{268}(143,·)$, $\chi_{268}(81,·)$, $\chi_{268}(107,·)$, $\chi_{268}(149,·)$, $\chi_{268}(215,·)$, $\chi_{268}(25,·)$, $\chi_{268}(15,·)$, $\chi_{268}(159,·)$, $\chi_{268}(225,·)$, $\chi_{268}(91,·)$, $\chi_{268}(129,·)$, $\chi_{268}(193,·)$, $\chi_{268}(135,·)$, $\chi_{268}(223,·)$, $\chi_{268}(241,·)$, $\chi_{268}(89,·)$, $\chi_{268}(265,·)$, $\chi_{268}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3589} a^{18} - \frac{1385}{3589} a^{16} - \frac{1598}{3589} a^{14} - \frac{55}{3589} a^{12} - \frac{42}{97} a^{10} + \frac{683}{3589} a^{8} - \frac{1074}{3589} a^{6} - \frac{1664}{3589} a^{4} + \frac{636}{3589} a^{2} - \frac{1168}{3589}$, $\frac{1}{104081} a^{19} - \frac{40864}{104081} a^{17} + \frac{9169}{104081} a^{15} - \frac{55}{104081} a^{13} + \frac{152}{2813} a^{11} + \frac{47340}{104081} a^{9} - \frac{11841}{104081} a^{7} + \frac{41404}{104081} a^{5} - \frac{2953}{104081} a^{3} - \frac{47825}{104081} a$, $\frac{1}{55922909710652711} a^{20} - \frac{3790645056271}{55922909710652711} a^{18} + \frac{12431823211438717}{55922909710652711} a^{16} - \frac{14784484195636425}{55922909710652711} a^{14} - \frac{10046397035901170}{55922909710652711} a^{12} - \frac{12590692015905581}{55922909710652711} a^{10} + \frac{680609036849393}{55922909710652711} a^{8} - \frac{10217098261483437}{55922909710652711} a^{6} - \frac{6571963048437087}{55922909710652711} a^{4} + \frac{6954739873882007}{55922909710652711} a^{2} + \frac{933518806678822}{1928376196919059}$, $\frac{1}{55922909710652711} a^{21} - \frac{29532384654}{55922909710652711} a^{19} + \frac{26506444130439762}{55922909710652711} a^{17} + \frac{532463726768104}{1511429992179803} a^{15} - \frac{10253258232840105}{55922909710652711} a^{13} + \frac{8561805649268427}{55922909710652711} a^{11} + \frac{10962953779240040}{55922909710652711} a^{9} + \frac{1170476304552377}{55922909710652711} a^{7} - \frac{18615583124764952}{55922909710652711} a^{5} - \frac{4151825845402994}{55922909710652711} a^{3} + \frac{14965561005560946}{55922909710652711} a$
Class group and class number
$C_{36961}$, which has order $36961$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{72933840167}{233987069919049} a^{21} - \frac{4205981313173}{233987069919049} a^{19} - \frac{93216845469217}{233987069919049} a^{17} - \frac{1075618941279740}{233987069919049} a^{15} - \frac{7206450912301406}{233987069919049} a^{13} - \frac{1005608112077194}{8068519652381} a^{11} - \frac{71087326003407904}{233987069919049} a^{9} - \frac{100037379277050157}{233987069919049} a^{7} - \frac{1997989584513736}{6323974862677} a^{5} - \frac{24100784453974422}{233987069919049} a^{3} - \frac{2053811813163438}{233987069919049} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338444542.043 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $22$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 67 | Data not computed | ||||||