Normalized defining polynomial
\( x^{22} - x^{21} + 116 x^{20} - 116 x^{19} + 5866 x^{18} - 5866 x^{17} + 169741 x^{16} - 169741 x^{15} + 3102241 x^{14} - 3102241 x^{13} + 37314741 x^{12} - 37314741 x^{11} + 298939741 x^{10} - 298939741 x^{9} + 1583705366 x^{8} - 1583705366 x^{7} + 5438002241 x^{6} - 5438002241 x^{5} + 11861830366 x^{4} - 11861830366 x^{3} + 16803236616 x^{2} - 16803236616 x + 17926283491 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13826007828239234871378695182440742234972683=-\,3^{11}\cdot 7^{11}\cdot 23^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(483=3\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{483}(64,·)$, $\chi_{483}(1,·)$, $\chi_{483}(398,·)$, $\chi_{483}(463,·)$, $\chi_{483}(272,·)$, $\chi_{483}(83,·)$, $\chi_{483}(20,·)$, $\chi_{483}(85,·)$, $\chi_{483}(400,·)$, $\chi_{483}(482,·)$, $\chi_{483}(419,·)$, $\chi_{483}(356,·)$, $\chi_{483}(293,·)$, $\chi_{483}(358,·)$, $\chi_{483}(232,·)$, $\chi_{483}(169,·)$, $\chi_{483}(211,·)$, $\chi_{483}(314,·)$, $\chi_{483}(251,·)$, $\chi_{483}(125,·)$, $\chi_{483}(190,·)$, $\chi_{483}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3912125981} a^{12} - \frac{1695528413}{3912125981} a^{11} + \frac{60}{3912125981} a^{10} + \frac{636960829}{3912125981} a^{9} + \frac{1350}{3912125981} a^{8} + \frac{1002838637}{3912125981} a^{7} + \frac{14000}{3912125981} a^{6} + \frac{1928617607}{3912125981} a^{5} + \frac{65625}{3912125981} a^{4} - \frac{936331937}{3912125981} a^{3} + \frac{112500}{3912125981} a^{2} - \frac{936331937}{3912125981} a + \frac{31250}{3912125981}$, $\frac{1}{3912125981} a^{13} + \frac{65}{3912125981} a^{11} + \frac{653390103}{3912125981} a^{10} + \frac{1625}{3912125981} a^{9} + \frac{1372497302}{3912125981} a^{8} + \frac{19500}{3912125981} a^{7} + \frac{545946899}{3912125981} a^{6} + \frac{113750}{3912125981} a^{5} - \frac{571380414}{3912125981} a^{4} + \frac{284375}{3912125981} a^{3} - \frac{1428451035}{3912125981} a^{2} + \frac{203125}{3912125981} a - \frac{571380414}{3912125981}$, $\frac{1}{3912125981} a^{14} + \frac{1323209480}{3912125981} a^{11} - \frac{2275}{3912125981} a^{10} - \frac{908696773}{3912125981} a^{9} - \frac{68250}{3912125981} a^{8} + \frac{1867577171}{3912125981} a^{7} - \frac{796250}{3912125981} a^{6} - \frac{743493477}{3912125981} a^{5} - \frac{3981250}{3912125981} a^{4} + \frac{751235155}{3912125981} a^{3} - \frac{7109375}{3912125981} a^{2} + \frac{1608305776}{3912125981} a - \frac{2031250}{3912125981}$, $\frac{1}{3912125981} a^{15} - \frac{2625}{3912125981} a^{11} + \frac{1853380028}{3912125981} a^{10} - \frac{87500}{3912125981} a^{9} - \frac{535773493}{3912125981} a^{8} - \frac{1181250}{3912125981} a^{7} - \frac{37440286}{83236723} a^{6} - \frac{7350000}{3912125981} a^{5} - \frac{1322615569}{3912125981} a^{4} - \frac{19140625}{3912125981} a^{3} + \frac{847508807}{3912125981} a^{2} - \frac{14062500}{3912125981} a + \frac{875369170}{3912125981}$, $\frac{1}{3912125981} a^{16} - \frac{821463700}{3912125981} a^{11} + \frac{70000}{3912125981} a^{10} + \frac{1008608745}{3912125981} a^{9} + \frac{2362500}{3912125981} a^{8} + \frac{1743069451}{3912125981} a^{7} + \frac{29400000}{3912125981} a^{6} - \frac{992416608}{3912125981} a^{5} + \frac{153125000}{3912125981} a^{4} - \frac{208709750}{3912125981} a^{3} + \frac{281250000}{3912125981} a^{2} - \frac{180849387}{3912125981} a + \frac{82031250}{3912125981}$, $\frac{1}{3912125981} a^{17} + \frac{85000}{3912125981} a^{11} - \frac{561207008}{3912125981} a^{10} + \frac{3187500}{3912125981} a^{9} - \frac{324714153}{3912125981} a^{8} + \frac{45900000}{3912125981} a^{7} + \frac{1761125233}{3912125981} a^{6} + \frac{297500000}{3912125981} a^{5} - \frac{749415430}{3912125981} a^{4} + \frac{796875000}{3912125981} a^{3} - \frac{1666648550}{3912125981} a^{2} + \frac{597656250}{3912125981} a - \frac{630062322}{3912125981}$, $\frac{1}{3912125981} a^{18} + \frac{544883933}{3912125981} a^{11} - \frac{1912500}{3912125981} a^{10} + \frac{1828397887}{3912125981} a^{9} - \frac{68850000}{3912125981} a^{8} + \frac{38084686}{83236723} a^{7} - \frac{892500000}{3912125981} a^{6} + \frac{481097394}{3912125981} a^{5} - \frac{869124019}{3912125981} a^{4} - \frac{1742961014}{3912125981} a^{3} - \frac{1140591788}{3912125981} a^{2} - \frac{706374786}{3912125981} a + \frac{1255875981}{3912125981}$, $\frac{1}{3912125981} a^{19} - \frac{2422500}{3912125981} a^{11} + \frac{432369755}{3912125981} a^{10} - \frac{96900000}{3912125981} a^{9} + \frac{1676355120}{3912125981} a^{8} - \frac{1453500000}{3912125981} a^{7} + \frac{751698344}{3912125981} a^{6} - \frac{1865748038}{3912125981} a^{5} + \frac{992528182}{3912125981} a^{4} + \frac{888788117}{3912125981} a^{3} - \frac{1046840997}{3912125981} a^{2} - \frac{626870095}{3912125981} a + \frac{1861489043}{3912125981}$, $\frac{1}{3912125981} a^{20} - \frac{1750277206}{3912125981} a^{11} + \frac{48450000}{3912125981} a^{10} - \frac{1005448305}{3912125981} a^{9} + \frac{1816875000}{3912125981} a^{8} + \frac{1885393578}{3912125981} a^{7} + \frac{752244114}{3912125981} a^{6} + \frac{1132046527}{3912125981} a^{5} - \frac{531814604}{3912125981} a^{4} + \frac{1128064227}{3912125981} a^{3} - \frac{1944438765}{3912125981} a^{2} + \frac{124268286}{3912125981} a + \frac{1372731361}{3912125981}$, $\frac{1}{3912125981} a^{21} + \frac{63590625}{3912125981} a^{11} - \frac{1616217432}{3912125981} a^{10} - \frac{1262516606}{3912125981} a^{9} + \frac{1835529154}{3912125981} a^{8} + \frac{1758427690}{3912125981} a^{7} - \frac{11579031}{83236723} a^{6} + \frac{448039724}{3912125981} a^{5} - \frac{861220164}{3912125981} a^{4} - \frac{1798209863}{3912125981} a^{3} + \frac{1185067594}{3912125981} a^{2} + \frac{1518960263}{3912125981} a + \frac{729347139}{3912125981}$
Class group and class number
$C_{2}\times C_{1433434}$, which has order $2866868$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1038656.82438 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-483}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | $22$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 23 | Data not computed | ||||||