Normalized defining polynomial
\( x^{22} + 11 x^{18} - 132 x^{16} + 165 x^{14} + 187 x^{12} - 88 x^{10} + 121 x^{8} + 44 x^{6} + 11 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13746825269346230984571837869981696=-\,2^{20}\cdot 11^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{26094157945967} a^{20} - \frac{383319158315}{26094157945967} a^{18} + \frac{10200486433918}{26094157945967} a^{16} + \frac{656513022000}{26094157945967} a^{14} - \frac{9332956024267}{26094157945967} a^{12} + \frac{7439303505825}{26094157945967} a^{10} - \frac{10207744256838}{26094157945967} a^{8} + \frac{422601095689}{26094157945967} a^{6} + \frac{3605534972329}{26094157945967} a^{4} + \frac{4563564804705}{26094157945967} a^{2} + \frac{10326525845257}{26094157945967}$, $\frac{1}{52188315891934} a^{21} - \frac{1}{52188315891934} a^{20} - \frac{383319158315}{52188315891934} a^{19} + \frac{383319158315}{52188315891934} a^{18} + \frac{5100243216959}{26094157945967} a^{17} - \frac{5100243216959}{26094157945967} a^{16} + \frac{328256511000}{26094157945967} a^{15} - \frac{328256511000}{26094157945967} a^{14} - \frac{9332956024267}{52188315891934} a^{13} + \frac{9332956024267}{52188315891934} a^{12} - \frac{9327427220071}{26094157945967} a^{11} + \frac{9327427220071}{26094157945967} a^{10} - \frac{5103872128419}{26094157945967} a^{9} + \frac{5103872128419}{26094157945967} a^{8} + \frac{422601095689}{52188315891934} a^{7} - \frac{422601095689}{52188315891934} a^{6} + \frac{3605534972329}{52188315891934} a^{5} - \frac{3605534972329}{52188315891934} a^{4} + \frac{4563564804705}{52188315891934} a^{3} - \frac{4563564804705}{52188315891934} a^{2} + \frac{10326525845257}{52188315891934} a - \frac{10326525845257}{52188315891934}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308178231.768 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.1.34522712143931.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||