Normalized defining polynomial
\( x^{22} - x^{21} + 93 x^{20} - 93 x^{19} + 3773 x^{18} - 3773 x^{17} + 87677 x^{16} - 87677 x^{15} + 1288829 x^{14} - 1288829 x^{13} + 12499581 x^{12} - 12499581 x^{11} + 81083005 x^{10} - 81083005 x^{9} + 350517885 x^{8} - 350517885 x^{7} + 997161597 x^{6} - 997161597 x^{5} + 1859353213 x^{4} - 1859353213 x^{3} + 2389932669 x^{2} - 2389932669 x + 2486401661 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1352766038082488977799200071554388212492359=-\,17^{11}\cdot 23^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(391=17\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{391}(256,·)$, $\chi_{391}(1,·)$, $\chi_{391}(67,·)$, $\chi_{391}(324,·)$, $\chi_{391}(390,·)$, $\chi_{391}(135,·)$, $\chi_{391}(203,·)$, $\chi_{391}(18,·)$, $\chi_{391}(339,·)$, $\chi_{391}(84,·)$, $\chi_{391}(152,·)$, $\chi_{391}(154,·)$, $\chi_{391}(33,·)$, $\chi_{391}(35,·)$, $\chi_{391}(356,·)$, $\chi_{391}(358,·)$, $\chi_{391}(237,·)$, $\chi_{391}(239,·)$, $\chi_{391}(307,·)$, $\chi_{391}(52,·)$, $\chi_{391}(373,·)$, $\chi_{391}(188,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{603054709} a^{12} - \frac{211295624}{603054709} a^{11} + \frac{48}{603054709} a^{10} - \frac{251186821}{603054709} a^{9} + \frac{864}{603054709} a^{8} + \frac{202393827}{603054709} a^{7} + \frac{7168}{603054709} a^{6} + \frac{210647371}{603054709} a^{5} + \frac{26880}{603054709} a^{4} - \frac{173506423}{603054709} a^{3} + \frac{36864}{603054709} a^{2} + \frac{223027687}{603054709} a + \frac{8192}{603054709}$, $\frac{1}{603054709} a^{13} + \frac{52}{603054709} a^{11} + \frac{242127787}{603054709} a^{10} + \frac{1040}{603054709} a^{9} + \frac{36236136}{603054709} a^{8} + \frac{9984}{603054709} a^{7} - \frac{95748805}{603054709} a^{6} + \frac{46592}{603054709} a^{5} - \frac{116382665}{603054709} a^{4} + \frac{93184}{603054709} a^{3} - \frac{232765330}{603054709} a^{2} + \frac{53248}{603054709} a + \frac{166736978}{603054709}$, $\frac{1}{603054709} a^{14} - \frac{228539236}{603054709} a^{11} - \frac{1456}{603054709} a^{10} - \frac{169252770}{603054709} a^{9} - \frac{34944}{603054709} a^{8} + \frac{234756953}{603054709} a^{7} - \frac{326144}{603054709} a^{6} - \frac{215061195}{603054709} a^{5} - \frac{1304576}{603054709} a^{4} - \frac{256251969}{603054709} a^{3} - \frac{1863680}{603054709} a^{2} + \frac{27336725}{603054709} a - \frac{425984}{603054709}$, $\frac{1}{603054709} a^{15} - \frac{1680}{603054709} a^{11} - \frac{54354204}{603054709} a^{10} - \frac{44800}{603054709} a^{9} - \frac{109287695}{603054709} a^{8} - \frac{483840}{603054709} a^{7} + \frac{57592809}{603054709} a^{6} - \frac{2408448}{603054709} a^{5} + \frac{163145837}{603054709} a^{4} - \frac{5017600}{603054709} a^{3} + \frac{223447899}{603054709} a^{2} - \frac{2949120}{603054709} a - \frac{291450133}{603054709}$, $\frac{1}{603054709} a^{16} + \frac{168221077}{603054709} a^{11} + \frac{35840}{603054709} a^{10} + \frac{35149325}{603054709} a^{9} + \frac{967680}{603054709} a^{8} - \frac{43633707}{603054709} a^{7} + \frac{9633792}{603054709} a^{6} + \frac{57614934}{603054709} a^{5} + \frac{40140800}{603054709} a^{4} + \frac{8081706}{603054709} a^{3} + \frac{58982400}{603054709} a^{2} - \frac{101910262}{603054709} a + \frac{13762560}{603054709}$, $\frac{1}{603054709} a^{17} + \frac{43520}{603054709} a^{11} - \frac{199751154}{603054709} a^{10} + \frac{1305600}{603054709} a^{9} - \frac{50459366}{603054709} a^{8} + \frac{15040512}{603054709} a^{7} - \frac{244701711}{603054709} a^{6} + \frac{77987840}{603054709} a^{5} - \frac{70259972}{603054709} a^{4} + \frac{167116800}{603054709} a^{3} - \frac{192120143}{603054709} a^{2} + \frac{100270080}{603054709} a - \frac{87052719}{603054709}$, $\frac{1}{603054709} a^{18} + \frac{7602494}{603054709} a^{11} - \frac{783360}{603054709} a^{10} + \frac{27280511}{603054709} a^{9} - \frac{22560768}{603054709} a^{8} - \frac{206973097}{603054709} a^{7} - \frac{233963520}{603054709} a^{6} + \frac{193840326}{603054709} a^{5} + \frac{203408618}{603054709} a^{4} - \frac{40602572}{603054709} a^{3} - \frac{297941782}{603054709} a^{2} - \frac{86449604}{603054709} a + \frac{246538869}{603054709}$, $\frac{1}{603054709} a^{19} - \frac{992256}{603054709} a^{11} + \frac{265415508}{603054709} a^{10} - \frac{31752192}{603054709} a^{9} - \frac{141926114}{603054709} a^{8} + \frac{222028405}{603054709} a^{7} - \frac{25912856}{603054709} a^{6} - \frac{222976161}{603054709} a^{5} + \frac{39905059}{603054709} a^{4} - \frac{223923917}{603054709} a^{3} + \frac{75651265}{603054709} a^{2} - \frac{297301548}{603054709} a - \frac{164995821}{603054709}$, $\frac{1}{603054709} a^{20} + \frac{120968122}{603054709} a^{11} + \frac{15876096}{603054709} a^{10} + \frac{135990701}{603054709} a^{9} - \frac{126771829}{603054709} a^{8} + \frac{199373221}{603054709} a^{7} + \frac{255913048}{603054709} a^{6} - \frac{192256529}{603054709} a^{5} - \frac{86489833}{603054709} a^{4} - \frac{243064867}{603054709} a^{3} + \frac{97941096}{603054709} a^{2} - \frac{178746843}{603054709} a + \frac{288849935}{603054709}$, $\frac{1}{603054709} a^{21} + \frac{20837376}{603054709} a^{11} - \frac{242986774}{603054709} a^{10} + \frac{91524491}{603054709} a^{9} + \frac{11380470}{603054709} a^{8} + \frac{130325914}{603054709} a^{7} - \frac{99083483}{603054709} a^{6} + \frac{240509647}{603054709} a^{5} - \frac{195193299}{603054709} a^{4} - \frac{1582748}{603054709} a^{3} + \frac{41976804}{603054709} a^{2} + \frac{88619918}{603054709} a - \frac{151968537}{603054709}$
Class group and class number
$C_{23}\times C_{28658}$, which has order $659134$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1038656.82438 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-391}) \), \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | R | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 23 | Data not computed | ||||||