Normalized defining polynomial
\( x^{22} - x^{21} + 8 x^{20} + x^{19} + 33 x^{18} + 20 x^{17} + 97 x^{16} + 111 x^{15} + 195 x^{14} + 258 x^{13} + 328 x^{12} + 369 x^{11} + 392 x^{10} + 323 x^{9} + 362 x^{8} + 155 x^{7} + 199 x^{6} + 67 x^{5} + 63 x^{4} + 12 x^{3} + 11 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13329203788379546293009624459083=-\,3^{11}\cdot 8674315276967^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 8674315276967$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{115784657874210295} a^{21} + \frac{23431828034692631}{115784657874210295} a^{20} - \frac{7789772315321106}{23156931574842059} a^{19} + \frac{46662758512857011}{115784657874210295} a^{18} + \frac{2656249426351201}{23156931574842059} a^{17} + \frac{9254299551471028}{23156931574842059} a^{16} + \frac{28427075076587712}{115784657874210295} a^{15} + \frac{2147689549661762}{23156931574842059} a^{14} + \frac{2405882823249934}{23156931574842059} a^{13} + \frac{32929886603380953}{115784657874210295} a^{12} + \frac{22791518417790999}{115784657874210295} a^{11} - \frac{8590465991101053}{115784657874210295} a^{10} + \frac{9949809252096111}{115784657874210295} a^{9} + \frac{2372570600368855}{23156931574842059} a^{8} - \frac{42137702602895658}{115784657874210295} a^{7} - \frac{57212672410156026}{115784657874210295} a^{6} - \frac{4051106483033128}{115784657874210295} a^{5} - \frac{27750441681636164}{115784657874210295} a^{4} - \frac{10934051260486457}{23156931574842059} a^{3} - \frac{53125724354311553}{115784657874210295} a^{2} + \frac{11478490846526063}{23156931574842059} a + \frac{44118488733472137}{115784657874210295}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{43777949891663214}{115784657874210295} a^{21} + \frac{56176992000648426}{115784657874210295} a^{20} - \frac{70862937565902418}{23156931574842059} a^{19} + \frac{46304238082105751}{115784657874210295} a^{18} - \frac{273845407499128465}{23156931574842059} a^{17} - \frac{92101589895594629}{23156931574842059} a^{16} - \frac{3756014963871124433}{115784657874210295} a^{15} - \frac{704799598835654261}{23156931574842059} a^{14} - \frac{1298457807946225426}{23156931574842059} a^{13} - \frac{8109584073922414987}{115784657874210295} a^{12} - \frac{9965297578375354916}{115784657874210295} a^{11} - \frac{10502743477324340478}{115784657874210295} a^{10} - \frac{10686083960975967849}{115784657874210295} a^{9} - \frac{1451060702086977237}{23156931574842059} a^{8} - \frac{9823105793066203988}{115784657874210295} a^{7} - \frac{897754812270058486}{115784657874210295} a^{6} - \frac{4998718253209464818}{115784657874210295} a^{5} - \frac{66532980044445694}{115784657874210295} a^{4} - \frac{232323650375546467}{23156931574842059} a^{3} + \frac{563169515708121062}{115784657874210295} a^{2} - \frac{32570281122904994}{23156931574842059} a + \frac{110778693642358837}{115784657874210295} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6808139.27799 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for t22n47 are not computed |
| Character table for t22n47 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.9.8674315276967.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 8674315276967 | Data not computed | ||||||