Normalized defining polynomial
\( x^{22} + 44 x^{18} - 22 x^{17} + 55 x^{16} + 121 x^{15} + 187 x^{14} + 11 x^{13} + 594 x^{12} + 328 x^{11} + 836 x^{10} + 770 x^{9} + 814 x^{8} + 528 x^{7} + 374 x^{6} + 143 x^{5} + 11 x^{4} - 33 x^{3} - 11 x^{2} + 1 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 11]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-13109994191499930367061460371\)\(\medspace = -\,11^{27}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $18.97$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{113970065816792274886719464268} a^{21} + \frac{16632653017427876909074098013}{113970065816792274886719464268} a^{20} + \frac{24534011559695427103983197473}{113970065816792274886719464268} a^{19} - \frac{8912679842265051647602954139}{113970065816792274886719464268} a^{18} - \frac{11497465387367424029509679281}{37990021938930758295573154756} a^{17} - \frac{27697277350382184186149372209}{113970065816792274886719464268} a^{16} - \frac{4130993445106208706555625189}{18995010969465379147786577378} a^{15} + \frac{19393796180526678183918660379}{113970065816792274886719464268} a^{14} + \frac{3812146990546715324894643805}{56985032908396137443359732134} a^{13} - \frac{35928163245366322324057443731}{113970065816792274886719464268} a^{12} + \frac{19371841436395072739319519835}{113970065816792274886719464268} a^{11} - \frac{28993452839782047961915623889}{113970065816792274886719464268} a^{10} - \frac{30475100792091463044359391785}{113970065816792274886719464268} a^{9} - \frac{4634344974055439584794468705}{37990021938930758295573154756} a^{8} - \frac{21883060672984889601168832733}{113970065816792274886719464268} a^{7} - \frac{17735108070800523283337582765}{113970065816792274886719464268} a^{6} + \frac{11159970877478780668745224323}{37990021938930758295573154756} a^{5} + \frac{621189490618127479206437519}{28492516454198068721679866067} a^{4} - \frac{48313980575167983792500458385}{113970065816792274886719464268} a^{3} - \frac{18634245538822845828429057679}{56985032908396137443359732134} a^{2} - \frac{1117306900741761353758598413}{113970065816792274886719464268} a - \frac{24046786530289485165087345829}{113970065816792274886719464268}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 302171.954912 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 110 |
The 11 conjugacy class representatives for $F_{11}$ |
Character table for $F_{11}$ |
Intermediate fields
\(\Q(\sqrt{-11}) \), 11.1.34522712143931.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 11 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
11 | Data not computed |