Normalized defining polynomial
\( x^{22} - 11 x^{20} + 99 x^{18} - 33 x^{16} - 726 x^{14} + 23474 x^{12} - 4096 x^{11} + 25894 x^{10} + 22528 x^{9} + 141086 x^{8} + 540672 x^{7} + 2309285 x^{6} + 315392 x^{5} + 5775209 x^{4} - 7434240 x^{3} + 5021863 x^{2} - 9168896 x + 5643763 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-129045097915537907803232946851577207980032=-\,2^{57}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{16} a^{2} - \frac{1}{16}$, $\frac{1}{16} a^{7} - \frac{1}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{16} a^{3} + \frac{1}{16} a + \frac{1}{8}$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{4} + \frac{1}{32}$, $\frac{1}{64} a^{9} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} - \frac{1}{32} a^{6} - \frac{1}{16} a^{5} + \frac{1}{32} a^{3} + \frac{1}{32} a^{2} + \frac{3}{64} a + \frac{1}{64}$, $\frac{1}{128} a^{10} + \frac{1}{128} a^{8} - \frac{1}{64} a^{6} + \frac{7}{64} a^{4} + \frac{1}{128} a^{2} - \frac{15}{128}$, $\frac{1}{1408} a^{11} - \frac{1}{128} a^{9} + \frac{1}{64} a^{7} - \frac{3}{64} a^{5} - \frac{5}{128} a^{3} - \frac{1}{4} a^{2} + \frac{39}{128} a + \frac{13}{44}$, $\frac{1}{2816} a^{12} - \frac{1}{256} a^{8} - \frac{7}{256} a^{4} + \frac{3}{11} a + \frac{101}{256}$, $\frac{1}{5632} a^{13} - \frac{1}{5632} a^{12} - \frac{1}{2816} a^{11} - \frac{1}{256} a^{10} + \frac{1}{512} a^{9} + \frac{7}{512} a^{8} - \frac{1}{128} a^{7} - \frac{3}{128} a^{6} + \frac{5}{512} a^{5} - \frac{53}{512} a^{4} - \frac{27}{256} a^{3} - \frac{243}{2816} a^{2} - \frac{1219}{5632} a - \frac{645}{5632}$, $\frac{1}{11264} a^{14} - \frac{1}{11264} a^{12} + \frac{3}{1024} a^{10} - \frac{11}{1024} a^{8} + \frac{17}{1024} a^{6} + \frac{127}{1024} a^{4} + \frac{3}{44} a^{3} + \frac{73}{1024} a^{2} + \frac{19}{44} a - \frac{209}{1024}$, $\frac{1}{22528} a^{15} - \frac{1}{22528} a^{14} - \frac{1}{22528} a^{13} - \frac{3}{22528} a^{12} + \frac{1}{22528} a^{11} + \frac{5}{2048} a^{10} - \frac{11}{2048} a^{9} - \frac{9}{2048} a^{8} + \frac{17}{2048} a^{7} + \frac{31}{2048} a^{6} - \frac{65}{2048} a^{5} + \frac{2319}{22528} a^{4} + \frac{1091}{22528} a^{3} - \frac{2187}{22528} a^{2} - \frac{8123}{22528} a + \frac{10327}{22528}$, $\frac{1}{22528} a^{16} - \frac{1}{256} a^{10} - \frac{13}{1024} a^{8} + \frac{1}{128} a^{6} + \frac{3}{88} a^{5} - \frac{11}{256} a^{4} + \frac{63}{256} a^{2} - \frac{1}{8} a - \frac{305}{2048}$, $\frac{1}{495616} a^{17} - \frac{1}{495616} a^{16} - \frac{3}{247808} a^{15} - \frac{3}{247808} a^{14} - \frac{1}{247808} a^{13} + \frac{3}{247808} a^{12} - \frac{23}{247808} a^{11} + \frac{27}{22528} a^{10} + \frac{5}{704} a^{9} + \frac{119}{11264} a^{8} - \frac{443}{22528} a^{7} - \frac{7305}{247808} a^{6} + \frac{11265}{247808} a^{5} + \frac{5957}{247808} a^{4} - \frac{4317}{247808} a^{3} + \frac{16227}{247808} a^{2} - \frac{93633}{495616} a + \frac{83197}{495616}$, $\frac{1}{1982464} a^{18} + \frac{15}{1982464} a^{16} + \frac{1}{61952} a^{15} + \frac{5}{123904} a^{14} - \frac{1}{15488} a^{13} + \frac{17}{247808} a^{12} - \frac{9}{61952} a^{11} + \frac{29}{8192} a^{10} + \frac{9}{2816} a^{9} - \frac{1019}{90112} a^{8} + \frac{1311}{61952} a^{7} + \frac{277}{22528} a^{6} + \frac{105}{3872} a^{5} - \frac{6395}{123904} a^{4} - \frac{1303}{61952} a^{3} - \frac{463603}{1982464} a^{2} + \frac{6615}{30976} a - \frac{446805}{1982464}$, $\frac{1}{3964928} a^{19} - \frac{1}{3964928} a^{18} - \frac{1}{3964928} a^{17} + \frac{3}{360448} a^{16} - \frac{1}{123904} a^{15} + \frac{1}{61952} a^{14} - \frac{29}{495616} a^{13} - \frac{87}{495616} a^{12} + \frac{413}{1982464} a^{11} - \frac{199}{180224} a^{10} + \frac{973}{180224} a^{9} - \frac{20351}{1982464} a^{8} + \frac{9309}{495616} a^{7} - \frac{9457}{495616} a^{6} - \frac{173}{2816} a^{5} - \frac{12219}{123904} a^{4} + \frac{283133}{3964928} a^{3} + \frac{475235}{3964928} a^{2} - \frac{1418037}{3964928} a + \frac{975093}{3964928}$, $\frac{1}{55508992} a^{20} + \frac{3}{27754496} a^{19} - \frac{1}{6938624} a^{18} - \frac{1}{2523136} a^{17} - \frac{15}{7929856} a^{16} - \frac{9}{867328} a^{15} + \frac{151}{6938624} a^{14} - \frac{95}{3469312} a^{13} + \frac{347}{2523136} a^{12} - \frac{4905}{13877248} a^{11} - \frac{79}{57344} a^{10} - \frac{86587}{13877248} a^{9} - \frac{401253}{27754496} a^{8} - \frac{106017}{3469312} a^{7} - \frac{3545}{630784} a^{6} - \frac{2363}{108416} a^{5} + \frac{451867}{7929856} a^{4} - \frac{3284873}{27754496} a^{3} - \frac{9261}{247808} a^{2} + \frac{744971}{2523136} a - \frac{11498077}{55508992}$, $\frac{1}{26490693581406208} a^{21} + \frac{29332957}{26490693581406208} a^{20} + \frac{1379310087}{13245346790703104} a^{19} + \frac{108233505}{1204122435518464} a^{18} - \frac{9145271503}{26490693581406208} a^{17} - \frac{182926033075}{26490693581406208} a^{16} + \frac{72985534583}{3311336697675776} a^{15} - \frac{11763812079}{301030608879616} a^{14} + \frac{64293840679}{1892192398671872} a^{13} - \frac{1591522641235}{13245346790703104} a^{12} - \frac{32660940201}{946096199335936} a^{11} + \frac{12704392989469}{6622673395351552} a^{10} + \frac{68703102746933}{13245346790703104} a^{9} + \frac{31537558968001}{13245346790703104} a^{8} - \frac{82974342819}{3909488427008} a^{7} + \frac{24218622574535}{3311336697675776} a^{6} + \frac{822153941009917}{26490693581406208} a^{5} - \frac{2425974690206103}{26490693581406208} a^{4} + \frac{118366184568845}{1204122435518464} a^{3} + \frac{691414248872275}{13245346790703104} a^{2} - \frac{12028706584504251}{26490693581406208} a - \frac{4863114693803}{19521513324544}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1485021311930 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 887040 |
| The 21 conjugacy class representatives for t22n41 |
| Character table for t22n41 is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.9.2 | $x^{4} - 2 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.8.22.24 | $x^{8} + 8 x^{5} + 2 x^{4} + 60$ | $4$ | $2$ | $22$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 4]^{2}$ | |
| 2.8.26.40 | $x^{8} + 4 x^{6} + 8 x^{5} + 4 x^{4} + 8 x^{3} + 6$ | $8$ | $1$ | $26$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 4]^{2}$ | |
| 11 | Data not computed | ||||||