Normalized defining polynomial
\( x^{22} - 3 x^{21} + 45 x^{20} - 12 x^{19} + 1263 x^{18} - 891 x^{17} + 11013 x^{16} + 12294 x^{15} + 42993 x^{14} + 18555 x^{13} + 42921 x^{12} + 71280 x^{11} + 36558 x^{10} + 25902 x^{9} + 32238 x^{8} + 31986 x^{7} + 15876 x^{6} + 6156 x^{5} + 13644 x^{4} + 11880 x^{3} + 972 x^{2} + 1944 x + 2916 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11914309055197948986020479547159042393930184375104869730372026368=-\,2^{24}\cdot 3^{29}\cdot 7^{4}\cdot 23^{4}\cdot 137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $817.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{18} a^{10} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{12} + \frac{1}{3} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{18} a^{13} + \frac{1}{6} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{18} a^{14} + \frac{1}{6} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{18} a^{15} - \frac{1}{6} a^{9} - \frac{1}{3} a^{6}$, $\frac{1}{18} a^{16} - \frac{1}{2} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{36} a^{17} - \frac{1}{36} a^{16} - \frac{1}{36} a^{14} - \frac{1}{36} a^{12} - \frac{1}{36} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{108} a^{18} - \frac{1}{36} a^{16} - \frac{1}{36} a^{15} - \frac{1}{36} a^{14} - \frac{1}{36} a^{13} - \frac{1}{36} a^{11} - \frac{1}{18} a^{9} + \frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{108} a^{19} - \frac{1}{36} a^{15} - \frac{1}{36} a^{11} - \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{729000} a^{20} + \frac{539}{121500} a^{19} - \frac{1}{250} a^{18} + \frac{16}{1215} a^{17} + \frac{6589}{243000} a^{16} - \frac{146}{10125} a^{15} - \frac{71}{30375} a^{14} - \frac{233}{10125} a^{13} + \frac{2173}{81000} a^{12} + \frac{59}{60750} a^{11} - \frac{179}{13500} a^{10} - \frac{833}{6750} a^{9} + \frac{584}{3375} a^{8} - \frac{253}{40500} a^{7} + \frac{19}{3375} a^{6} - \frac{34}{2025} a^{5} - \frac{251}{675} a^{4} - \frac{478}{1125} a^{3} - \frac{2699}{20250} a^{2} - \frac{1169}{6750} a + \frac{361}{2250}$, $\frac{1}{303086670176456970495967843893000} a^{21} + \frac{62877033312676226643337859}{101028890058818990165322614631000} a^{20} - \frac{58584704071888747806777657703}{16838148343136498360887102438500} a^{19} + \frac{89208343461135934688170354027}{50514445029409495082661307315500} a^{18} - \frac{550281195146542606984208821061}{101028890058818990165322614631000} a^{17} - \frac{41437599164613159493927799053}{11225432228757665573924734959000} a^{16} - \frac{84008107975105419501195207019}{10102889005881899016532261463100} a^{15} - \frac{114201825613608330176246864243}{8419074171568249180443551219250} a^{14} - \frac{732808487347834512025166960429}{33676296686272996721774204877000} a^{13} + \frac{2148363286863957936910404800003}{101028890058818990165322614631000} a^{12} - \frac{340460108101748991341890265879}{16838148343136498360887102438500} a^{11} - \frac{34813192622930723855242840063}{5612716114378832786962367479500} a^{10} + \frac{79051423906010284517875207037}{1403179028594708196740591869875} a^{9} - \frac{3505474528221712527610380808759}{16838148343136498360887102438500} a^{8} + \frac{117308749292721446023210302637}{623635123819870309662485275500} a^{7} - \frac{738263379368294124665191202744}{4209537085784124590221775609625} a^{6} + \frac{41237231905077996920002382}{2078783746066234365541617585} a^{5} + \frac{226065368423862965294102960992}{467726342864902732246863956625} a^{4} - \frac{58946005574161323203539379567}{647621090120634552341811632250} a^{3} - \frac{551960269123146876829892197919}{1403179028594708196740591869875} a^{2} + \frac{8139182683610586415124095936}{467726342864902732246863956625} a + \frac{92310343042549322083703075941}{311817561909935154831242637750}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{45857543861397661588583459}{404115560235275960661290458524} a^{21} - \frac{2181086504872815458901569}{44901728915030662295698939836} a^{20} - \frac{178216142039565906970027051}{44901728915030662295698939836} a^{19} - \frac{539925034001650159653401131}{33676296686272996721774204877} a^{18} - \frac{18838203925820066566983220577}{134705186745091986887096819508} a^{17} - \frac{17489914613439699792040572251}{44901728915030662295698939836} a^{16} - \frac{125478777649349894314594768633}{134705186745091986887096819508} a^{15} - \frac{42130229910541202487660866179}{7483621485838443715949823306} a^{14} - \frac{437757791793002786648961750035}{44901728915030662295698939836} a^{13} - \frac{2585127815797723748584080269551}{134705186745091986887096819508} a^{12} - \frac{485052396037237426537672653287}{44901728915030662295698939836} a^{11} - \frac{84166308867181713814939181060}{3741810742919221857974911653} a^{10} - \frac{181554584272409390007286070047}{7483621485838443715949823306} a^{9} - \frac{192874228667814523305394214015}{11225432228757665573924734959} a^{8} - \frac{40848039178800285815335173547}{7483621485838443715949823306} a^{7} - \frac{148928184816721105621690756067}{22450864457515331147849469918} a^{6} - \frac{71083581891760346712654921431}{7483621485838443715949823306} a^{5} - \frac{655827849591219147265103117}{138585583071082291036107839} a^{4} - \frac{1433494370743172721762961097}{863494786827512736455748843} a^{3} - \frac{3014364559620487801239175585}{1247270247639740619324970551} a^{2} - \frac{1097996282465898389484983687}{415756749213246873108323517} a + \frac{30621804865368512430518822}{415756749213246873108323517} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1462413343710000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 39916800 |
| The 62 conjugacy class representatives for t22n46 are not computed |
| Character table for t22n46 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | $22$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $22$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.14.0.1 | $x^{14} - x + 7$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
| $137$ | 137.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 137.10.8.1 | $x^{10} - 137 x^{5} + 112614$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.10.8.1 | $x^{10} - 137 x^{5} + 112614$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |