Normalized defining polynomial
\( x^{22} - 2 x^{21} + 5 x^{20} - 6 x^{19} + 10 x^{18} - 13 x^{17} + 3 x^{16} - 4 x^{15} - 15 x^{14} + 9 x^{13} - 23 x^{12} + 35 x^{11} + 5 x^{10} + 25 x^{9} + 40 x^{8} + 18 x^{7} + 38 x^{6} + 20 x^{4} - x^{3} + 6 x^{2} - x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-115803236519047451106947869227=-\,3^{11}\cdot 43^{2}\cdot 547^{2}\cdot 34374601^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43, 547, 34374601$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{29275294621} a^{21} + \frac{4185761014}{29275294621} a^{20} + \frac{3928590006}{29275294621} a^{19} + \frac{13199236597}{29275294621} a^{18} - \frac{6415758335}{29275294621} a^{17} - \frac{7054629563}{29275294621} a^{16} + \frac{9524936744}{29275294621} a^{15} + \frac{11518178150}{29275294621} a^{14} + \frac{12952435522}{29275294621} a^{13} - \frac{5335611812}{29275294621} a^{12} + \frac{6660188026}{29275294621} a^{11} + \frac{11392218556}{29275294621} a^{10} + \frac{10656534332}{29275294621} a^{9} - \frac{2469442180}{29275294621} a^{8} - \frac{14191355256}{29275294621} a^{7} - \frac{6543744014}{29275294621} a^{6} + \frac{13864829787}{29275294621} a^{5} - \frac{13764315871}{29275294621} a^{4} + \frac{12328723558}{29275294621} a^{3} + \frac{8171879412}{29275294621} a^{2} - \frac{12442141888}{29275294621} a - \frac{7597210961}{29275294621}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11307843807}{29275294621} a^{21} + \frac{18246944389}{29275294621} a^{20} - \frac{43384200134}{29275294621} a^{19} + \frac{38235754751}{29275294621} a^{18} - \frac{69224999870}{29275294621} a^{17} + \frac{84547144458}{29275294621} a^{16} + \frac{54054545054}{29275294621} a^{15} - \frac{11061081329}{29275294621} a^{14} + \frac{176701846103}{29275294621} a^{13} - \frac{39693760996}{29275294621} a^{12} + \frac{171776276246}{29275294621} a^{11} - \frac{266469120117}{29275294621} a^{10} - \frac{268235852086}{29275294621} a^{9} - \frac{178290882146}{29275294621} a^{8} - \frac{479126883259}{29275294621} a^{7} - \frac{312556665316}{29275294621} a^{6} - \frac{387667695384}{29275294621} a^{5} - \frac{111912562848}{29275294621} a^{4} - \frac{138072703532}{29275294621} a^{3} - \frac{107311486997}{29275294621} a^{2} - \frac{33643120766}{29275294621} a - \frac{293954466}{29275294621} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 583781.984765 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for t22n47 are not computed |
| Character table for t22n47 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.7.808524990121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | R | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $18{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.7.0.1 | $x^{7} - 2 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 43.7.0.1 | $x^{7} - 2 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 547 | Data not computed | ||||||
| 34374601 | Data not computed | ||||||