Normalized defining polynomial
\( x^{22} - x^{21} + 69 x^{20} + 107 x^{19} + 1709 x^{18} + 7027 x^{17} + 28072 x^{16} + 135984 x^{15} + 407666 x^{14} + 1343170 x^{13} + 3834110 x^{12} + 8660900 x^{11} + 19147508 x^{10} + 34080648 x^{9} + 46733335 x^{8} + 54976444 x^{7} + 45275429 x^{6} - 4039339 x^{5} - 25724027 x^{4} + 4152387 x^{3} + 42185124 x^{2} + 41416437 x + 48482809 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10870284342485680666407125885565079749365234375=-\,5^{11}\cdot 67^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(335=5\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{335}(1,·)$, $\chi_{335}(131,·)$, $\chi_{335}(196,·)$, $\chi_{335}(204,·)$, $\chi_{335}(139,·)$, $\chi_{335}(76,·)$, $\chi_{335}(334,·)$, $\chi_{335}(81,·)$, $\chi_{335}(259,·)$, $\chi_{335}(216,·)$, $\chi_{335}(91,·)$, $\chi_{335}(156,·)$, $\chi_{335}(94,·)$, $\chi_{335}(226,·)$, $\chi_{335}(209,·)$, $\chi_{335}(109,·)$, $\chi_{335}(241,·)$, $\chi_{335}(179,·)$, $\chi_{335}(244,·)$, $\chi_{335}(126,·)$, $\chi_{335}(119,·)$, $\chi_{335}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14} - \frac{5}{29} a^{13} - \frac{8}{29} a^{12} + \frac{13}{29} a^{11} - \frac{14}{29} a^{10} + \frac{11}{29} a^{9} + \frac{12}{29} a^{8} + \frac{7}{29} a^{7} - \frac{10}{29} a^{6} + \frac{1}{29} a^{5} - \frac{9}{29} a^{4} + \frac{14}{29} a^{3} + \frac{7}{29} a^{2} - \frac{4}{29} a$, $\frac{1}{29} a^{15} - \frac{4}{29} a^{13} + \frac{2}{29} a^{12} - \frac{7}{29} a^{11} - \frac{1}{29} a^{10} + \frac{9}{29} a^{9} + \frac{9}{29} a^{8} - \frac{4}{29} a^{7} + \frac{9}{29} a^{6} - \frac{4}{29} a^{5} - \frac{2}{29} a^{4} - \frac{10}{29} a^{3} + \frac{2}{29} a^{2} + \frac{9}{29} a$, $\frac{1}{29} a^{16} + \frac{11}{29} a^{13} - \frac{10}{29} a^{12} - \frac{7}{29} a^{11} + \frac{11}{29} a^{10} - \frac{5}{29} a^{9} - \frac{14}{29} a^{8} + \frac{8}{29} a^{7} + \frac{14}{29} a^{6} + \frac{2}{29} a^{5} + \frac{12}{29} a^{4} + \frac{8}{29} a^{2} + \frac{13}{29} a$, $\frac{1}{29} a^{17} - \frac{13}{29} a^{13} - \frac{6}{29} a^{12} + \frac{13}{29} a^{11} + \frac{4}{29} a^{10} + \frac{10}{29} a^{9} - \frac{8}{29} a^{8} - \frac{5}{29} a^{7} - \frac{4}{29} a^{6} + \frac{1}{29} a^{5} + \frac{12}{29} a^{4} - \frac{1}{29} a^{3} - \frac{6}{29} a^{2} - \frac{14}{29} a$, $\frac{1}{29} a^{18} - \frac{13}{29} a^{13} - \frac{4}{29} a^{12} - \frac{1}{29} a^{11} + \frac{2}{29} a^{10} - \frac{10}{29} a^{9} + \frac{6}{29} a^{8} - \frac{13}{29} a^{6} - \frac{4}{29} a^{5} - \frac{2}{29} a^{4} + \frac{2}{29} a^{3} - \frac{10}{29} a^{2} + \frac{6}{29} a$, $\frac{1}{29} a^{19} - \frac{11}{29} a^{13} + \frac{11}{29} a^{12} - \frac{3}{29} a^{11} + \frac{11}{29} a^{10} + \frac{4}{29} a^{9} + \frac{11}{29} a^{8} - \frac{9}{29} a^{7} + \frac{11}{29} a^{6} + \frac{11}{29} a^{5} + \frac{1}{29} a^{4} - \frac{2}{29} a^{3} + \frac{10}{29} a^{2} + \frac{6}{29} a$, $\frac{1}{841} a^{20} - \frac{7}{841} a^{19} + \frac{10}{841} a^{18} + \frac{3}{841} a^{16} - \frac{9}{841} a^{15} + \frac{12}{841} a^{14} + \frac{173}{841} a^{13} - \frac{265}{841} a^{12} + \frac{334}{841} a^{11} - \frac{246}{841} a^{10} - \frac{47}{841} a^{9} - \frac{366}{841} a^{8} + \frac{237}{841} a^{7} + \frac{28}{841} a^{6} + \frac{152}{841} a^{5} - \frac{385}{841} a^{4} - \frac{8}{841} a^{3} + \frac{32}{841} a^{2} + \frac{5}{29} a$, $\frac{1}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{21} - \frac{175598113808716509250190197545648032358865287908251948864543751914372804175}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{20} - \frac{40040480828282422847179879665261793298662469945006930882503297071922846452406}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{19} + \frac{109942926537638182495618119809666818609684953095781092004767298914129728294703}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{18} + \frac{142656479266406910616769112944838730730526169946944958053493112642695674208260}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{17} - \frac{53642689088452243363675267832366222065712091229130954311730220915496111030030}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{16} + \frac{93067227708459841757029748819812993170225071747924723790868569317297852717267}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{15} + \frac{126511798831182913579175632706225154486152488374252433134513096804980426449254}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{14} + \frac{3433065573192042466362363283096009852236308176042188295377156310310475954669324}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{13} - \frac{3605800884408882699086465424905852625924882452426872398480301799274175230465825}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{12} - \frac{154571431217561048959783364097180900937329155488847309109645657595775062464059}{344115075218851159808309168736238612299265037257805342512371141329113086026021} a^{11} + \frac{334483686937474256538514782404624102751201129825361975905036386951010124563199}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{10} - \frac{131114859291401217515040275595886882442013104559906163429538207610205551284072}{344115075218851159808309168736238612299265037257805342512371141329113086026021} a^{9} + \frac{4334466379971109724950026659757192618542216943076762007944886035310677642774058}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{8} + \frac{3125416491483470862283297728235898547104744072278252725331682659422352590718955}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{7} + \frac{1635981395262235521365045125176645879023002842474142051636277235457623946522642}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{6} - \frac{716708245274408456973392326836387102798744758232735716978979773075680080693315}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{5} - \frac{19938366200893396664733019265429754108726047613929223649067811205585822113949}{344115075218851159808309168736238612299265037257805342512371141329113086026021} a^{4} + \frac{3903891086780914810056961230150683515034856897654355278515490728602876640488252}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{3} + \frac{260031937211573439196274027853155174536854038387359514216211252722446904991287}{9979337181346683634440965893350919756678686080476354932858763098544279494754609} a^{2} + \frac{113070000245462819025738197312704309661739048898427175833894198983595706928538}{344115075218851159808309168736238612299265037257805342512371141329113086026021} a - \frac{2457583092432538922356450150744943431539444084585175405941217276456005071990}{11866037076512108958907212715042710768940173698545011810771418666521140897449}$
Class group and class number
$C_{306522}$, which has order $306522$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338444542.042557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 22 |
| The 22 conjugacy class representatives for $C_{22}$ |
| Character table for $C_{22}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-335}) \), 11.11.1822837804551761449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{22}$ | $22$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 67 | Data not computed | ||||||