Normalized defining polynomial
\( x^{22} + 81 x^{20} + 2082 x^{18} + 19218 x^{16} + 53361 x^{14} + 19161 x^{12} - 39240 x^{10} - 1188 x^{8} + 6588 x^{6} - 11628 x^{4} + 648 x^{2} + 2916 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1016687706043558313473747588024238284282042400008948883658412916736=-\,2^{32}\cdot 3^{28}\cdot 7^{4}\cdot 23^{4}\cdot 137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1000.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{16} - \frac{1}{24} a^{12} - \frac{1}{12} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{13} - \frac{1}{12} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2880} a^{18} - \frac{1}{48} a^{17} - \frac{19}{960} a^{16} - \frac{1}{24} a^{15} + \frac{3}{320} a^{14} - \frac{1}{48} a^{13} - \frac{17}{960} a^{12} - \frac{3}{80} a^{10} - \frac{1}{12} a^{9} + \frac{1}{80} a^{8} - \frac{1}{2} a^{7} + \frac{3}{16} a^{6} + \frac{1}{4} a^{5} - \frac{1}{20} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{80}$, $\frac{1}{8640} a^{19} + \frac{7}{960} a^{17} - \frac{1}{48} a^{16} - \frac{71}{2880} a^{15} - \frac{1}{24} a^{14} + \frac{103}{2880} a^{13} - \frac{1}{48} a^{12} - \frac{1}{80} a^{11} - \frac{19}{240} a^{9} - \frac{1}{4} a^{8} + \frac{19}{48} a^{7} - \frac{1}{2} a^{6} + \frac{3}{20} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{119}{240} a + \frac{1}{4}$, $\frac{1}{1493420671440000} a^{20} - \frac{6998383241}{82967815080000} a^{18} - \frac{1}{48} a^{17} + \frac{125709011017}{124451722620000} a^{16} - \frac{1}{24} a^{15} - \frac{564349644793}{248903445240000} a^{14} - \frac{1}{48} a^{13} + \frac{78815781607}{165935630160000} a^{12} + \frac{120142811489}{2592744221250} a^{10} - \frac{1}{12} a^{9} + \frac{2117417156077}{20741953770000} a^{8} - \frac{1}{2} a^{7} + \frac{3627844697647}{13827969180000} a^{6} + \frac{1}{4} a^{5} - \frac{1360561801883}{3456992295000} a^{4} + \frac{1}{4} a^{3} + \frac{7033477595401}{41483907540000} a^{2} + \frac{1}{4} a - \frac{826128757889}{4609323060000}$, $\frac{1}{8960524028640000} a^{21} - \frac{1}{2986841342880000} a^{20} + \frac{5452471471}{124451722620000} a^{19} - \frac{5452471471}{41483907540000} a^{18} + \frac{5696180886659}{1493420671440000} a^{17} - \frac{5696180886659}{497806890480000} a^{16} - \frac{4743208403917}{373355167860000} a^{15} + \frac{4743208403917}{124451722620000} a^{14} + \frac{31710295280857}{995613780960000} a^{13} - \frac{4054356920857}{331871260320000} a^{12} + \frac{183319225537}{124451722620000} a^{11} + \frac{3273673069463}{41483907540000} a^{10} + \frac{1188345789101}{62225861310000} a^{9} - \frac{1188345789101}{20741953770000} a^{8} - \frac{693395671103}{82967815080000} a^{7} - \frac{13134573508897}{27655938360000} a^{6} + \frac{195084730867}{20741953770000} a^{5} - \frac{195084730867}{6913984590000} a^{4} + \frac{27775431365401}{248903445240000} a^{3} + \frac{13708476174599}{82967815080000} a^{2} - \frac{12291819869639}{27655938360000} a + \frac{3073173749639}{9218646120000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4567075753}{14934206714400} a^{21} - \frac{42101919589}{1659356301600} a^{19} - \frac{3412551810019}{4978068904800} a^{17} - \frac{35527572977077}{4978068904800} a^{15} - \frac{23295128768543}{829678150800} a^{13} - \frac{16627560775277}{414839075400} a^{11} - \frac{3493734376577}{414839075400} a^{9} + \frac{698524944067}{69139845900} a^{7} - \frac{84087518498}{17284961475} a^{5} + \frac{837295383947}{414839075400} a^{3} + \frac{34699246297}{7682205100} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 89738500243100000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 39916800 |
| The 62 conjugacy class representatives for t22n46 are not computed |
| Character table for t22n46 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | R | $22$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.12.18.67 | $x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 2$ | $12$ | $1$ | $18$ | $C_2 \times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.14.0.1 | $x^{14} - x + 7$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |