Normalized defining polynomial
\( x^{22} - x^{21} + 7 x^{20} - 4 x^{19} + 31 x^{18} - 18 x^{17} + 77 x^{16} - 41 x^{15} + 140 x^{14} - 96 x^{13} + 153 x^{12} - 129 x^{11} + 145 x^{10} - 148 x^{9} + 84 x^{8} - 72 x^{7} + 94 x^{6} - 20 x^{5} + 39 x^{4} + 12 x^{3} + 18 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10046547996724887091059294601443=-\,3^{11}\cdot 29^{2}\cdot 131^{2}\cdot 5399^{2}\cdot 367163^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29, 131, 5399, 367163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{13677239212089721} a^{21} + \frac{1293211240915228}{13677239212089721} a^{20} - \frac{5026308183262881}{13677239212089721} a^{19} + \frac{265569078960793}{13677239212089721} a^{18} + \frac{140683497308997}{13677239212089721} a^{17} + \frac{3092267571064062}{13677239212089721} a^{16} + \frac{704891312247647}{13677239212089721} a^{15} + \frac{3673414768924176}{13677239212089721} a^{14} - \frac{275290191621555}{13677239212089721} a^{13} + \frac{6536687791222354}{13677239212089721} a^{12} - \frac{2366917544829102}{13677239212089721} a^{11} - \frac{2404067940776095}{13677239212089721} a^{10} + \frac{3221173838721429}{13677239212089721} a^{9} - \frac{3768442768735910}{13677239212089721} a^{8} + \frac{5786275054318706}{13677239212089721} a^{7} - \frac{1418924701457527}{13677239212089721} a^{6} - \frac{259556439495174}{13677239212089721} a^{5} - \frac{1817689733634960}{13677239212089721} a^{4} + \frac{6618113169608472}{13677239212089721} a^{3} + \frac{2861743908395042}{13677239212089721} a^{2} - \frac{2205921994586860}{13677239212089721} a - \frac{4206275681874869}{13677239212089721}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2685629293987735}{13677239212089721} a^{21} + \frac{2425506734097330}{13677239212089721} a^{20} - \frac{18387432369558813}{13677239212089721} a^{19} + \frac{9109022292712439}{13677239212089721} a^{18} - \frac{81671737681889821}{13677239212089721} a^{17} + \frac{42322341360437781}{13677239212089721} a^{16} - \frac{200264700221761619}{13677239212089721} a^{15} + \frac{99373435198554347}{13677239212089721} a^{14} - \frac{366524544292272972}{13677239212089721} a^{13} + \frac{247513061564379161}{13677239212089721} a^{12} - \frac{397088590715102046}{13677239212089721} a^{11} + \frac{353837120676200861}{13677239212089721} a^{10} - \frac{398897307145589961}{13677239212089721} a^{9} + \frac{417045500203026235}{13677239212089721} a^{8} - \frac{248328683492113525}{13677239212089721} a^{7} + \frac{224633125767905671}{13677239212089721} a^{6} - \frac{300744197938415810}{13677239212089721} a^{5} + \frac{63232402023086114}{13677239212089721} a^{4} - \frac{120862632834872891}{13677239212089721} a^{3} - \frac{7178304024482238}{13677239212089721} a^{2} - \frac{55662381431239864}{13677239212089721} a + \frac{1319886993338294}{13677239212089721} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2461752.74517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 79833600 |
| The 112 conjugacy class representatives for t22n47 are not computed |
| Character table for t22n47 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 11.9.7530807227563.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | $22$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $131$ | 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 131.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 131.4.0.1 | $x^{4} - x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 131.10.0.1 | $x^{10} - x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 5399 | Data not computed | ||||||
| 367163 | Data not computed | ||||||