Normalized defining polynomial
\( x^{21} + 57 x^{19} - 38 x^{18} + 945 x^{17} - 1260 x^{16} + 1149 x^{15} - 1458 x^{14} - 88857 x^{13} + 239328 x^{12} - 701973 x^{11} + 1647894 x^{10} - 1948325 x^{9} + 871524 x^{8} + 376527 x^{7} - 688030 x^{6} + 389772 x^{5} - 121176 x^{4} + 26064 x^{3} - 6048 x^{2} + 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(885089036289472230248449911866758194384850649088=2^{21}\cdot 3^{22}\cdot 7^{13}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $191.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{2} + \frac{1}{16} a - \frac{3}{8}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{7}{16} a^{2} - \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{16} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{10} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{3}{32} a^{4} + \frac{3}{32} a^{2} + \frac{1}{8}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{7} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} - \frac{1}{8} a^{4} + \frac{3}{32} a^{3} + \frac{1}{8} a^{2} - \frac{1}{16} a + \frac{1}{8}$, $\frac{1}{64} a^{14} + \frac{1}{64} a^{10} - \frac{1}{16} a^{8} + \frac{3}{64} a^{6} - \frac{1}{4} a^{4} - \frac{5}{64} a^{2} + \frac{5}{16}$, $\frac{1}{64} a^{15} + \frac{1}{64} a^{11} + \frac{3}{64} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{5}{64} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{256} a^{16} - \frac{1}{128} a^{15} + \frac{1}{256} a^{14} + \frac{1}{256} a^{12} - \frac{3}{128} a^{11} + \frac{5}{256} a^{10} + \frac{1}{64} a^{9} + \frac{7}{256} a^{8} - \frac{7}{128} a^{7} + \frac{19}{256} a^{6} + \frac{3}{32} a^{5} - \frac{53}{256} a^{4} + \frac{11}{128} a^{3} - \frac{89}{256} a^{2} + \frac{25}{64} a + \frac{27}{64}$, $\frac{1}{4096} a^{17} - \frac{1}{512} a^{16} - \frac{31}{4096} a^{15} - \frac{7}{2048} a^{14} - \frac{7}{4096} a^{13} - \frac{1}{1024} a^{12} + \frac{117}{4096} a^{11} + \frac{35}{2048} a^{10} - \frac{81}{4096} a^{9} + \frac{15}{512} a^{8} + \frac{51}{4096} a^{7} + \frac{191}{2048} a^{6} + \frac{179}{4096} a^{5} - \frac{121}{1024} a^{4} + \frac{183}{4096} a^{3} + \frac{37}{2048} a^{2} - \frac{295}{1024} a - \frac{1}{512}$, $\frac{1}{65536} a^{18} - \frac{3}{32768} a^{17} + \frac{81}{65536} a^{16} - \frac{115}{16384} a^{15} - \frac{291}{65536} a^{14} - \frac{393}{32768} a^{13} + \frac{749}{65536} a^{12} + \frac{107}{4096} a^{11} + \frac{1595}{65536} a^{10} + \frac{235}{32768} a^{9} - \frac{349}{65536} a^{8} + \frac{345}{16384} a^{7} - \frac{7505}{65536} a^{6} - \frac{191}{32768} a^{5} + \frac{3183}{65536} a^{4} - \frac{953}{8192} a^{3} - \frac{3329}{8192} a^{2} - \frac{445}{1024} a + \frac{767}{4096}$, $\frac{1}{1048576} a^{19} - \frac{1}{262144} a^{18} + \frac{69}{1048576} a^{17} - \frac{149}{524288} a^{16} + \frac{1861}{1048576} a^{15} - \frac{939}{131072} a^{14} - \frac{9015}{1048576} a^{13} - \frac{443}{524288} a^{12} - \frac{16485}{1048576} a^{11} - \frac{4717}{262144} a^{10} + \frac{29263}{1048576} a^{9} + \frac{16725}{524288} a^{8} - \frac{36489}{1048576} a^{7} + \frac{3039}{32768} a^{6} - \frac{30349}{1048576} a^{5} - \frac{51829}{524288} a^{4} - \frac{27635}{131072} a^{3} + \frac{12171}{65536} a^{2} - \frac{16361}{65536} a - \frac{1}{32768}$, $\frac{1}{16777216} a^{20} - \frac{1}{8388608} a^{19} + \frac{61}{16777216} a^{18} - \frac{5}{524288} a^{17} + \frac{1265}{16777216} a^{16} - \frac{1895}{8388608} a^{15} + \frac{8729}{16777216} a^{14} - \frac{4729}{4194304} a^{13} - \frac{51025}{16777216} a^{12} + \frac{170689}{8388608} a^{11} - \frac{336153}{16777216} a^{10} + \frac{27881}{2097152} a^{9} - \frac{297269}{16777216} a^{8} - \frac{315545}{8388608} a^{7} + \frac{1638707}{16777216} a^{6} - \frac{467073}{4194304} a^{5} - \frac{541275}{4194304} a^{4} - \frac{16269}{131072} a^{3} - \frac{327891}{1048576} a^{2} + \frac{32779}{262144} a + \frac{131071}{262144}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153826381441000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.18.25 | $x^{12} - 864 x^{10} - 9916 x^{8} + 11008 x^{6} + 14512 x^{4} + 2560 x^{2} + 14528$ | $2$ | $6$ | $18$ | $D_4 \times C_3$ | $[2, 3]^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $173$ | $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.12.6.1 | $x^{12} + 196753246 x^{6} - 154963892093 x^{2} + 9677959952884129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |