Normalized defining polynomial
\( x^{21} - 26208 x^{19} - 195536 x^{18} + 291973068 x^{17} + 4409577342 x^{16} - 1795665131924 x^{15} - 41002370088498 x^{14} + 6572542654341105 x^{13} + 203858863109865284 x^{12} - 14213279062376569485 x^{11} - 582361703119054694040 x^{10} + 16275661558142313035035 x^{9} + 945745018043095393911180 x^{8} - 5646302360560715152043103 x^{7} - 792530253662409376623342416 x^{6} - 4726551871709798292359565120 x^{5} + 266740346394447654507510010344 x^{4} + 2440298711745375561122234921808 x^{3} - 44488899123058840085730493001568 x^{2} - 315068960394756661920290849696640 x + 3724414958441731059478927509146752 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(834507966212271820403374346664412679514757637054312831716289049278398513152=2^{14}\cdot 3^{21}\cdot 37^{12}\cdot 59^{3}\cdot 109^{12}\cdot 10859^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3695.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 59, 109, 10859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4033} a^{6} - \frac{2010}{4033} a^{4} - \frac{1952}{4033} a^{3}$, $\frac{1}{4033} a^{7} - \frac{2010}{4033} a^{5} - \frac{1952}{4033} a^{4}$, $\frac{1}{4033} a^{8} - \frac{1952}{4033} a^{5} + \frac{966}{4033} a^{4} + \frac{589}{4033} a^{3}$, $\frac{1}{16265089} a^{9} - \frac{2010}{16265089} a^{7} - \frac{1952}{16265089} a^{6} - \frac{159}{4033} a^{5} + \frac{1130}{4033} a^{4} - \frac{765}{4033} a^{3}$, $\frac{1}{16265089} a^{10} - \frac{2010}{16265089} a^{8} - \frac{1952}{16265089} a^{7} + \frac{1130}{4033} a^{5} - \frac{1748}{4033} a^{4} + \frac{173}{4033} a^{3}$, $\frac{1}{16265089} a^{11} - \frac{1952}{16265089} a^{8} + \frac{966}{16265089} a^{7} + \frac{589}{16265089} a^{6} - \frac{251}{4033} a^{5} + \frac{1991}{4033} a^{4} - \frac{1121}{4033} a^{3}$, $\frac{1}{65597103937} a^{12} - \frac{2010}{65597103937} a^{10} - \frac{1952}{65597103937} a^{9} - \frac{159}{16265089} a^{8} + \frac{1130}{16265089} a^{7} - \frac{765}{16265089} a^{6} - \frac{1646}{4033} a^{5} + \frac{1794}{4033} a^{4} + \frac{1138}{4033} a^{3}$, $\frac{1}{65597103937} a^{13} - \frac{2010}{65597103937} a^{11} - \frac{1952}{65597103937} a^{10} + \frac{1130}{16265089} a^{8} - \frac{1748}{16265089} a^{7} + \frac{173}{16265089} a^{6} - \frac{792}{4033} a^{5} - \frac{514}{4033} a^{4} - \frac{419}{4033} a^{3}$, $\frac{1}{65597103937} a^{14} - \frac{1952}{65597103937} a^{11} + \frac{966}{65597103937} a^{10} + \frac{589}{65597103937} a^{9} - \frac{251}{16265089} a^{8} + \frac{1991}{16265089} a^{7} - \frac{1121}{16265089} a^{6} - \frac{3}{109} a^{5} + \frac{732}{4033} a^{4} - \frac{1884}{4033} a^{3}$, $\frac{1}{529106240355842} a^{15} - \frac{1005}{264553120177921} a^{13} - \frac{976}{264553120177921} a^{12} + \frac{1937}{65597103937} a^{11} + \frac{565}{65597103937} a^{10} + \frac{1634}{65597103937} a^{9} - \frac{1799}{16265089} a^{8} - \frac{3283}{32530178} a^{7} + \frac{1904}{16265089} a^{6} - \frac{1511}{8066} a^{5} - \frac{1222}{4033} a^{4} + \frac{1087}{8066} a^{3} - \frac{1}{2} a$, $\frac{1}{1058212480711684} a^{16} + \frac{1514}{264553120177921} a^{14} - \frac{488}{264553120177921} a^{13} - \frac{1387}{131194207874} a^{11} + \frac{46}{65597103937} a^{10} - \frac{1341}{131194207874} a^{9} - \frac{5327}{65060356} a^{8} - \frac{647}{16265089} a^{7} - \frac{709}{65060356} a^{6} - \frac{2011}{4033} a^{5} + \frac{2403}{16132} a^{4} + \frac{182}{4033} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{2116424961423368} a^{17} - \frac{244}{264553120177921} a^{14} - \frac{1775}{529106240355842} a^{13} + \frac{2311}{1058212480711684} a^{12} + \frac{3967}{131194207874} a^{11} + \frac{107}{7091578804} a^{10} + \frac{4993}{524776831496} a^{9} - \frac{2599}{32530178} a^{8} - \frac{1749}{130120712} a^{7} + \frac{1375}{16265089} a^{6} + \frac{9051}{32264} a^{5} + \frac{3691}{8066} a^{4} + \frac{11569}{32264} a^{3}$, $\frac{1}{17071083738840886288} a^{18} + \frac{757}{2133885467355110786} a^{16} - \frac{122}{1066942733677555393} a^{15} - \frac{2053}{1058212480711684} a^{14} + \frac{6679}{2116424961423368} a^{13} - \frac{7249}{1058212480711684} a^{12} - \frac{2737}{524776831496} a^{11} + \frac{31825}{1049553662992} a^{10} - \frac{7451}{262388415748} a^{9} - \frac{29013}{260241424} a^{8} - \frac{2881}{32530178} a^{7} + \frac{16595}{260241424} a^{6} + \frac{11}{16132} a^{5} + \frac{19177}{64528} a^{4} + \frac{706}{4033} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{34142167477681772576} a^{19} + \frac{757}{4267770934710221572} a^{17} - \frac{61}{1066942733677555393} a^{16} - \frac{1}{2116424961423368} a^{15} - \frac{25585}{4232849922846736} a^{14} + \frac{14155}{2116424961423368} a^{13} - \frac{13569}{4232849922846736} a^{12} - \frac{21519}{2099107325984} a^{11} + \frac{9621}{524776831496} a^{10} + \frac{43163}{2099107325984} a^{9} - \frac{5029}{65060356} a^{8} + \frac{35331}{520482848} a^{7} + \frac{435}{3516776} a^{6} - \frac{14583}{129056} a^{5} + \frac{585}{4033} a^{4} - \frac{5869}{16132} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{9868164911693192118981216464827011585528600170357518855986935612111181055896165055197635139314479766603925018865651717246289642452565815378215459136} a^{20} - \frac{22262227037796663113103141432916331253057811409440535506893849768512375131559589606473066335056786764409329758344499482935982025}{2467041227923298029745304116206752896382150042589379713996733903027795263974041263799408784828619941650981254716412929311572410613141453844553864784} a^{19} - \frac{13204267686207680733888918430743352997447948550918976245125718434527637261786250879981722006123836501628241491642223336609911109}{2467041227923298029745304116206752896382150042589379713996733903027795263974041263799408784828619941650981254716412929311572410613141453844553864784} a^{18} - \frac{130959147503494971238971778369841582358587814354823710272262165790865794222682294211488183589527228228284676853122131753135127857789}{616760306980824507436326029051688224095537510647344928499183475756948815993510315949852196207154985412745313679103232327893102653285363461138466196} a^{17} + \frac{326821363009457626179334878379715293160432369860642702626194563518656350922968831667933418622537347388272809210852815972039089444455}{2467041227923298029745304116206752896382150042589379713996733903027795263974041263799408784828619941650981254716412929311572410613141453844553864784} a^{16} + \frac{1554885012109695950594666580852834879628552523568684650229666319593565170547266878040320045183951725983488076862957497828657528749255}{4934082455846596059490608232413505792764300085178759427993467806055590527948082527598817569657239883301962509432825858623144821226282907689107729568} a^{15} - \frac{3462734693904784733543286974533644002035616796493292186617480014075108757033816284141558047837680289052939184122398128536300067927359}{611713669209843300209596854997955094565373181896697176790660526414033043385579286833476019049992546900813601467000478381247808235343777298426448} a^{14} - \frac{1956065512640039370781985998004562743990125592401137125506475772084283488226296535661044364730011393219041397626547542137899614718237}{1223427338419686600419193709995910189130746363793394353581321052828066086771158573666952038099985093801627202934000956762495616470687554596852896} a^{13} + \frac{2384026820903649627348121550749873124471954566534663454452079135362831387467706119055970301555405262045744314465953326942623070064265}{2446854676839373200838387419991820378261492727586788707162642105656132173542317147333904076199970187603254405868001913524991232941375109193705792} a^{12} + \frac{4404665436410219797468631241863528548813381162154998817385346789985792216656869185922450521990111835674845876958638084969760613889}{2049690288933338136755539954155095779298400298539405233816488719463188972683400080529804850021084655982782589136249182022797757136541697544} a^{11} - \frac{16797166826629218529249720449495277152804563024184555206082241991083425432247559432619702696101460075025806994804112357409655020989393}{606708325524268088479639826429908350672326488367663949209680660961103935914286423836822235606241058170903646384329757878748136112416342473024} a^{10} - \frac{322347113017990488237534703307659870010914684986959589472961970027172358464446356405754695011103668398114814600437542216600660932109}{151677081381067022119909956607477087668081622091915987302420165240275983978571605959205558901560264542725911596082439469687034028104085618256} a^{9} + \frac{123234791141551858822495752986244375104354759831326687741574696943732741105720781292407646460410412113165400642314380683890536619827}{1009637479925294322642960386259513960617400553433608883106453405314051584352392133750288701445026614608845558345544822128094455827371072} a^{8} - \frac{112095104970645851908918805332016977444061026375430300852782405844681589809151234199394225780812062060399281177309969298066592719427}{4701124515902151689806284298520861879124771326925241361964423668493552689640825872774781766103405174272437131046443078033939809946196554} a^{7} + \frac{8823233050058398280675757584015278235383810058379435829231787314124290089310470947177415057579003167066827123477199731590045912223973}{150435984508868854073801097552667580131992682461607723582861557391793686068506427928793016515308965576717988193486178497086073918278289728} a^{6} - \frac{2332366228148839498112025566798039779831883867618131220776974219993132595295593517091827030671896339313617636725457277539610769693401}{9325315181556462563463990673981377394742913616514240241932900904524775977467544503396542060210077211549590143409755671775729848641104} a^{5} + \frac{3418589229472252006441972488021553301886271984592729402517063848306587292128020722780970053147543382626453863518745713045763293910687}{9325315181556462563463990673981377394742913616514240241932900904524775977467544503396542060210077211549590143409755671775729848641104} a^{4} - \frac{1728764334702139427380538515679701335386626529410290357143595601572164714812428051764007486023042328298776670636373370283970782728219}{4662657590778231281731995336990688697371456808257120120966450452262387988733772251698271030105038605774795071704877835887864924320552} a^{3} + \frac{41581851909899793556379027241441725408874844039927489849038104774045068015044343750198986829216154028872853074837296251626666663}{144515794407954106178155074912927370982254426241542279970445402066153855341364128802946659747862590062447156945973153852215005093} a^{2} - \frac{38358230901343189838515535963175198888973399423107638067478858230153403649094031918114583893865818918084656130509683384203061634}{144515794407954106178155074912927370982254426241542279970445402066153855341364128802946659747862590062447156945973153852215005093} a + \frac{44786316634607122633741044769657500258415609841066317059703831966444784266077088748533771859711563448267533885254189951633114508}{144515794407954106178155074912927370982254426241542279970445402066153855341364128802946659747862590062447156945973153852215005093}$
Class group and class number
Not computed
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7348320 |
| The 118 conjugacy class representatives for t21n138 are not computed |
| Character table for t21n138 is not computed |
Intermediate fields
| 7.3.640681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.9.0.1}{9} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| 3 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.3.2.3 | $x^{3} - 148$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.3 | $x^{3} - 148$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.4.2 | $x^{6} - 37 x^{3} + 6845$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 59 | Data not computed | ||||||
| $109$ | 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 109.9.6.1 | $x^{9} + 3270 x^{6} + 3552419 x^{3} + 1295029000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 109.9.6.3 | $x^{9} - 218 x^{6} + 11881 x^{3} - 129502900$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| 10859 | Data not computed | ||||||